A. \(6\sqrt 5 \)
B. \(6\sqrt 2 \)
C. 6
D. \(6\sqrt 3 \)
D
Đặt \(EF = x,EC = 8 - x\)
\( \Rightarrow FC = \sqrt {{x^2} - {{\left( {8 - x} \right)}^2}} = \sqrt {16x - 64} \)
Ta có:
\(\begin{array}{l}
\Delta ADF \sim \Delta FCE\left( {g.g} \right)\\
\Rightarrow \frac{{EF}}{{AF}} = \frac{{CF}}{{AD}}\\
\Rightarrow AF = \frac{{EF.AD}}{{FC}} = \frac{{8x}}{{\sqrt {16x - 64} }}
\end{array}\)
\(\begin{array}{l}
y = AE = \sqrt {A{F^2} + E{F^2}} \\
= \sqrt {\frac{{64{x^2}}}{{16x - 64}} + {x^2}} = \sqrt {\frac{{16{x^3}}}{{16x - 64}}} \\
f\left( x \right) = \frac{{16{x^3}}}{{16x - 64}}\,\,x \in \left( {0;8} \right)\\
f'\left( x \right) = \frac{{48{x^2}\left( {16x - 64} \right) - 16.16{x^3}}}{{{{\left( {16x - 64} \right)}^2}}}\\
f'\left( x \right) = 0 \Leftrightarrow 768{x^3} - 3072{x^2} - 256{x^3} = 0\\
\Leftrightarrow 512{x^3} - 3072{x^2} = 0 \Leftrightarrow x = 6
\end{array}\)
BBT
\(y = \sqrt {f\left( x \right)} \Rightarrow {y_{\min }} = \sqrt {{f_{\min }}} = \sqrt {108} = 6\sqrt 3 \)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247