A. \(S = \frac{1}{{\ln 2}}\)
B. \(S = \frac{1}{{{{\left( {\ln 2} \right)}^2}}}\)
C. \(S = \frac{1}{{{{\left( {\ln 2} \right)}^3}}}\)
D. \(S = \frac{1}{{{{\left( {\ln 2} \right)}^4}}}\)
B
\(x = 0 \Rightarrow y = \frac{1}{{\ln 2}} \Rightarrow A(0;\frac{1}{{\ln 2}}) \Rightarrow OA = \frac{1}{{\ln 2}}\)
Ta có : \(y' = \frac{{{{(\sqrt 2 )}^x}\ln \sqrt 2 }}{{\ln 2}} = \frac{1}{2}{(\sqrt 2 )^x} \Rightarrow y'(0) = \frac{1}{2}\)
Phương trình tiếp tuyến tại A là: \(C_3^2.2 = 6\)
Giao điểm B của tiếp tuyến với trục hoành:
\(\begin{array}{*{20}{l}}
{B(\frac{{ - 2}}{{\ln 2}};0) \Rightarrow OB = \frac{2}{{\ln 2}}}
\end{array}\)
Vậy \({S_{OAB}} = \frac{1}{2}OA.OB = \frac{1}{{{{\left( {\ln 2} \right)}^2}}}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247