Đặt: \(\overrightarrow{AB}=\overrightarrow{a}\,;\,\,\overrightarrow{AC}=\overrightarrow{b}\) và \(\overrightarrow{AK}=t.\overrightarrow{AM}\)
Khi đó: \(\overrightarrow{BK}=\left( \frac{2t}{3}-1 \right)\overrightarrow{a}+\frac{t}{3}.\overrightarrow{b}\)
\(\overrightarrow{BN}=-\overrightarrow{a}+\frac{2}{3}\overrightarrow{b}\)
Do B, N, K thẳng hàng nên \(\exists \,m:\overrightarrow{BK}=m\overrightarrow{BN}\Leftrightarrow \left( \frac{2t}{3}-1 \right)\overrightarrow{a}+\frac{t}{3}.\overrightarrow{b}=m\left( -\overrightarrow{a}+\frac{2}{3}\overrightarrow{b} \right)\)
\( \Leftrightarrow \left\{ \begin{array}{l}
\frac{{2t}}{3} - 1 = - m\\
\frac{t}{3} = \frac{{2m}}{3}
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m = \frac{3}{7}\\
t = \frac{6}{7}
\end{array} \right.\)
Suy ra \(\overrightarrow{AK}=\frac{6}{7}.\overrightarrow{AM}\Rightarrow \overrightarrow{AK}=6.\overrightarrow{KM}\Rightarrow AK=6.KM\)
Vậy \(\frac{KM}{KA}=\frac{1}{6}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247