Có bao nhiêu giá trị thực của tham số m để phương trình có đúng 3 nghiệm thực phân biệt

Câu hỏi :

Có bao nhiêu giá trị thực của tham số \(m\) để phương trình \(m{.3^{{x^2} - 3x + 2}} + {3^{4 - {x^2}}} = {3^{6 - 3x}} + m\) có đúng \(3\) nghiệm thực phân biệt.

A. 1

B. 2

C. 3

D. 4

* Đáp án

A

* Hướng dẫn giải

Đặt. \(\left\{ \begin{array}{l}{3^{{x^2} - 3x + 2}} = u\\{3^{4 - {x^2}}} = v\end{array} \right. \Rightarrow u.v = {3^{6 - 3x}}\). Khi đó phương trình trở thành \(\begin{array}{l}mu + v = uv + m \Leftrightarrow m\left( {u - 1} \right) - v\left( {u - 1} \right) = 0 \Leftrightarrow \left( {u - 1} \right)\left( {m - v} \right) = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \left[ \begin{array}{l}u = 1\\v = m\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{3^{^{{x^2} - 3x + 2}}} = 1\\{3^{2 - {x^2}}} = m\end{array} \right.\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \left[ \begin{array}{l}^{}{x^2} - 3x + 2 = 0\\4 - {x^2} = {\log _3}m\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\\{x^2} = 4 - {\log _3}m\end{array} \right.\end{array}\)

Để phương trình có ba nghiệm thì \({x^2} = 4 - {\log _3}m\) có một nghiệm khác \(1;2\). Tức \(4 - {\log _3}m = 0 \Leftrightarrow m = 81\).

Copyright © 2021 HOCTAP247