Cho hàm số \(f\left( x \right)\) có \(f\left( 0 \right)=0\) và \({f}'\left( x \right)=\cos x{{\cos }^{2}}2x,\forall x\in \mathbb{R}\). Khi đó \(\int\limits_{0}^{\pi }{f\left( x \ri...

Câu hỏi :

Cho hàm số \(f\left( x \right)\) có \(f\left( 0 \right)=0\) và \({f}'\left( x \right)=\cos x{{\cos }^{2}}2x,\forall x\in \mathbb{R}\). Khi đó \(\int\limits_{0}^{\pi }{f\left( x \right)\text{d}x}\) bằng

A. \(\frac{1041}{225}.\)    

B. \(\frac{208}{225}.\)

C. \(\frac{242}{225}.\)                                     

D. \(\frac{149}{225}.\)

* Đáp án

C

* Hướng dẫn giải

Ta có \({f}'\left( x \right)=\cos x{{\cos }^{2}}2x\)\(=\frac{\cos x}{2}+\frac{\cos 3x}{4}+\frac{\cos 5x}{4}\)

Do đó \(f\left( x \right)=\int{{f}'\left( x \right)\text{d}x}=\int{\left( \frac{\cos x}{2}+\frac{\cos 3x}{4}+\frac{\cos 5x}{4} \right)\text{d}x}\)

\(\Rightarrow f(x)=\frac{\sin x}{2}+\frac{\sin 3x}{12}+\frac{\sin 5x}{20}+C\), vì \(f(0)=0\) nên \(C=0\)

\(\Rightarrow I=\int_{0}^{\pi }{f}(x)dx=\frac{242}{225}\)

Copyright © 2021 HOCTAP247