Một người vay ngân hàng 1 tỷ đồng với lãi kép là 12%/năm

Câu hỏi :

Một người vay ngân hàng 1 tỷ đồng với lãi kép là 12%/năm. Hỏi người đó phải trả ngân hàng hàng tháng bao nhiêu tiền để sau đúng 5 năm người đó trả xong nợ ngân hàng?

A. 88 848 789 đồng.        

B. 14 673 315  đồng.    

C. 47 073 472  đồng.

D. 111 299 776  đồng.

* Đáp án

C

* Hướng dẫn giải

Gọi \(A\) là số tiền người đó vay ngân hàng ( đồng), \(a\) là số tiền phải trả hàng tháng và \(r\left( \%  \right)\) là lãi suất kép. Ta có:

- Số tiền nợ ngân hàng tháng thứ nhất: \({R_1} = A\left( {1 + r} \right)\)

- Số tiền nợ ngân hàng tháng thứ hai : \({R_2} = \left( {A\left( {1 + r} \right) - a} \right)\left( {1 + r} \right) = A{\left( {1 + r} \right)^2} - a\left( {1 + r} \right)\)

- Số tiền nợ ngân hàng tháng thứ ba:

\({R_3} = \left( {A{{\left( {1 + r} \right)}^2} - a\left( {1 + r} \right) - a} \right)\left( {1 + r} \right) = A{\left( {1 + r} \right)^3} - a{\left( {1 + r} \right)^2} - a\left( {1 + r} \right)\)

….

- Số tiền nợ ngân hàng tháng thứ \(n\) : \({R_n} = A{\left( {1 + r} \right)^n} - a{\left( {1 + r} \right)^{n - 1}} - ... - a\left( {1 + r} \right)\)

Tháng thứ \(n\) trả xong nợ: \({R_n} = a \Leftrightarrow a = \frac{{A.r.{{\left( {1 + r} \right)}^n}}}{{{{\left( {1 + r} \right)}^n} - 1}}\)

Áp dụng với \(A = {1.10^9}\) đồng, \(r = 0,01\), và \(n = 24\), ta có \(a = 47\,073\,472\)

Copyright © 2021 HOCTAP247