Cho hàm số y=f(x). Hàm số y=f'(x) có đồ thị như hình bên Hàm số \(g\left( x \right) = f\left( {3{x^2} - 1} \right) - \frac{9}{2}{x^4} + 3{x^2}\) đồng biến trên khoảng nào dưới đ...

Câu hỏi :

Cho hàm số y=f(x). Hàm số y=f'(x) có đồ thị như hình bên

A. \(\left( { - \frac{{2\sqrt 3 }}{3};\,\frac{{ - \sqrt 3 }}{3}} \right)\)

B. \(\left( {0;\frac{{2\sqrt 3 }}{3}} \right)\)

C. \((1;2)\)

D. \(\left( { - \frac{{\sqrt 3 }}{3}\,;\,\frac{{\sqrt 3 }}{3}} \right)\)

* Đáp án

A

* Hướng dẫn giải

\(\begin{array}{l} \begin{array}{*{20}{l}} {f'(x) = \frac{{ - {x^3}}}{2} - \frac{{{x^2}}}{2} + 7x}\\ {f(x) = \frac{{ - {x^4}}}{8} - \frac{{{x^3}}}{6} + \frac{7}{2}{x^2}}\\ {g\left( x \right) = f\left( {3{x^2} - 1} \right) - \frac{9}{2}{x^4} + 3{x^2}}\\ {g'(x) = 6xf'\left( {3{x^2} - 1} \right) - 18{x^3} + 6x}\\ { = 6x\left( {f'\left( {3{x^2} - 1} \right) - \left( {3{x^2} - 1} \right)} \right) = 0}\\ { \Leftrightarrow \left[ {\begin{array}{*{20}{l}} {x = 0}\\ {f'\left( t \right) - t = 0} \end{array}} \right.}\\ {f'\left( t \right) - t = 0 \Rightarrow \frac{{ - {t^3}}}{2} - \frac{{{t^2}}}{2} + 7t - t = 0}\\ \begin{array}{l} \Rightarrow \left[ {\begin{array}{*{20}{l}} {t = 0}\\ {t = 3}\\ {x = - 4} \end{array}} \right.\\ \Rightarrow \left[ \begin{array}{l} x = 0\\ 3{x^2} - 1 = 0\\ 3{x^2} - 1 = 3\\ 3{x^2} - 1 = - 4 \end{array} \right. \end{array} \end{array}\\ \Rightarrow x \in \left\{ { \pm \frac{{2\sqrt 3 }}{3}; \pm \frac{{\sqrt 3 }}{3};0} \right\} \end{array}\)

 

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề KSCL lần 3 năm 2020 môn Toán 12 THPT Nguyễn Viết Xuân

Số câu hỏi: 46

Copyright © 2021 HOCTAP247