A. \(T = \frac{{2\pi }}{3}\).
B. \(T = \frac{\pi }{2}\).
C. \(T = \pi \).
D. \(T = \frac{\pi }{3}\).
B
\(\frac{{\left( {2\cos x - 1} \right)\left( {\sin 2x - \cos x} \right)}}{{\sin x - 1}} = 0\,\,\,\)( Điều kiện \(\sin x \ne 1 \Leftrightarrow x \ne \frac{\pi }{2} + k2\pi \))
Với điều kiện đó phương trình tương đương với
\(\left[ \begin{array}{l}\cos {\rm{x}} = \frac{1}{2}\\\sin 2{\rm{x}} = \cos {\rm{x}}\end{array} \right. \Leftrightarrow \cos {\rm{x}} = \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = - \frac{\pi }{3} + k2\pi \end{array} \right.(TM);\,\,\)
\(\,\sin 2{\rm{x}} = \cos {\rm{x}} \Leftrightarrow \sin 2{\rm{x}} = \sin \left( {\frac{\pi }{2} - x} \right) \Leftrightarrow \left[ \begin{array}{l}2{\rm{x}} = \frac{\pi }{2} - x + k2\pi \\2{\rm{x}} = \pi - \frac{\pi }{2} + x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + \frac{{k2\pi }}{3}\,\,\,\,\,\,(TM)\\x = \frac{\pi }{2} + k2\pi \,\,\,\,\,\,\,(L)\end{array} \right.\)
Vì \(x \in \left[ {0;\frac{\pi }{2}} \right]\) nên phương trình có nghiệm \(x = \frac{\pi }{3};\,\,x = \frac{\pi }{6}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247