Dãy số nào là cấp số nhân, trong các dãy số được cho sau đây

Câu hỏi :

Dãy số nào là cấp số nhân, trong các dãy số được cho sau đây?

A. \(\left\{ \begin{array}{l}{u_1} = \frac{1}{{\sqrt 2 }}\\{u_{n + 1}} = u_n^2\end{array} \right.\).

B. \(\left\{ \begin{array}{l}{u_1} = \frac{1}{{\sqrt 2 }}\\{u_{n + 1}} =  - \sqrt 2 {\rm{ }}{\rm{. }}{u_n}\end{array} \right.\).

C. \({u_n} = {n^2} + 1\).

D. \(\left\{ \begin{array}{l}{u_1} = 1;{\rm{ }}{u_2} = \sqrt 2 \\{u_{n + 1}} = {u_{n - 1}}.{u_n}\end{array} \right.\).

* Đáp án

B

* Hướng dẫn giải

Do \({u_{n + 1}} =  - \sqrt 2 .{u_n}\) Þ dãy số \(\left( {{u_n}} \right):\) \(\left\{ \begin{array}{l}{u_1} = \frac{1}{{\sqrt 2 }}\\{u_{n + 1}} =  - \sqrt 2 {\rm{ }}{\rm{. }}{u_n}\end{array} \right.\)là một cấp số nhân với công bội \(q = 2\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Thi Online Đề thi thử THPT Quốc gia 2018 môn Toán số 1

Số câu hỏi: 50

Copyright © 2021 HOCTAP247