A. \(m = - 2\sqrt 3 \).
B. \(m = 2\).
C. \(m = 2\sqrt 3 \).
D. Không tồn tại \(m\).
C
+ Phương trình \(\left( 1 \right)\) có nghiệm khi và chỉ khi \(\Delta ' \ge 0 \Leftrightarrow 9{m^2} - 12\left( {{m^2} - 4 + \frac{{12}}{{{m^2}}}} \right) \ge 0\)
\( \Leftrightarrow 4 \le {m^2} \le 12 \Leftrightarrow m \in \left[ { - 2\sqrt 3 ; - 2} \right] \cup \left[ {2;2\sqrt 3 } \right]\).
Theo định lý Vi-ét, phương trình \(\left( 1 \right)\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn:\(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{m}{2}\\{x_1}{x_2} = \frac{1}{{12}}\left( {{m^2} - 4 + \frac{{12}}{{{m^2}}}} \right)\end{array} \right.\).
\( \Rightarrow x_1^3 + x_2^3 = {\left( {x_1^{} + x_2^{}} \right)^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right) = \frac{m}{2} - \frac{3}{{2m}}\).
+ Xét hàm số \(y = \frac{m}{2} - \frac{3}{{2m}}\) có:
TXĐ: \(D = \left[ { - 2\sqrt 3 ; - 2} \right] \cup \left[ {2;2\sqrt 3 } \right]\).
\(y' = \frac{1}{2} + \frac{3}{{2{m^2}}} > 0,\forall m \in D\).
Lập bảng biến thiến.
Dựa vào bảng biến thiên ta suy ra \({\left( {x_1^3 + x_2^3} \right)_{\max }} = \frac{{3\sqrt 3 }}{4}\) đạt được khi \(m = 2\sqrt 3 \).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247