Đường thẳng y = x – 1 cắt đồ thị hàm số \(y = \dfrac{{2x - 1}}{{x + 1}}\) tại các điểm có tọa độ là:

Câu hỏi :

Đường thẳng y = x – 1 cắt đồ thị hàm số \(y = \dfrac{{2x - 1}}{{x + 1}}\) tại các điểm có tọa độ là bao nhiêu?

A. (0 ; - 1), (2 ; 1)

B. (0 ; 2)

C. (1 ; 2)

D. (- 1 ; 0), (2 ; 1)

* Đáp án

A

* Hướng dẫn giải

Xét phương trình hoành độ

\(\begin{array}{l}x - 1 = \dfrac{{2x - 1}}{{x + 1}},x \ne - 1\\ \Leftrightarrow {x^2} - 1 = 2x - 1 \Leftrightarrow {x^2} - 2x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\end{array}\)

Hoành độ giao điểm của đường thẳng y = x - 1 và \(y = \dfrac{{2x - 1}}{{x + 1}}\)\(\left( {0, - 1} \right),\left( {2,1} \right)\)

Copyright © 2021 HOCTAP247