Nếu \({\log _7}x = 8{\log _7}a{b^2} - 2{\log _7}{a^3}b\,\,(a,b > 0)\) thì \(x\) bằng:

Câu hỏi :

Nếu \({\log _7}x = 8{\log _7}a{b^2} - 2{\log _7}{a^3}b\,\,(a,b > 0)\) thì x bằng mấy?

A. \({a^4}{b^6}\)

B. \({a^6}{b^{12}}\)

C. \({a^2}{b^{14}}\)

D. \({a^8}{b^{14}}\)

* Đáp án

C

* Hướng dẫn giải

Ta có:

\({\log _7}x = 8{\log _7}a{b^2} - 2{\log _7}{a^3}b\,\)\(\, = {\log _7}{a^8}{b^{16}} - {\log _7}{a^6}{b^2}\)\(\, = {\log _7}\left( {\dfrac{{{a^8}{b^{16}}}}{{{a^6}{b^2}}}} \right) = \log \left( {{a^2}{b^{14}}} \right)\)

Copyright © 2021 HOCTAP247