Cho biểu thức \(A = \frac{{2xy}}{{{x^2} + {y^2}}},\) với \(x, y\neq 0\) Giá trị nhỏ nhất của A bằng:

Câu hỏi :

Cho biểu thức \(A = \frac{{2xy}}{{{x^2} + {y^2}}},\) với \(x, y\neq 0\) Giá trị nhỏ nhất của A bằng:

A. 1

B. 0

C. -1

D. Không có giá trị nhỏ nhất

* Đáp án

C

* Hướng dẫn giải

Đặt \(y=xt, t\neq 0\)
Khi đó: 
 \(A = \frac{{2xt.x}}{{{x^2} + {{(xt)}^2}}} = \frac{{2t}}{{1 + {t^2}}}\)
Xét hàm số: 
\(f(t) = \frac{{2t}}{{1 + {t^2}}}\) trên R
\(f'(t) = - \frac{{2({t^2} - 1)}}{{{{\left( {t{}^2 + 1} \right)}^2}}}\)
\(f'(t) = 0 \Leftrightarrow \left[ \begin{array}{l} t = - 1\\ t = 1 \end{array} \right.\)
Bảng biến thiên:

Vậy
\(min \ f(t)= -1\) tại \(t =- 1\neq 0\)
Vậy GTNN của A bằng -1.

Copyright © 2021 HOCTAP247