Chứng minh rằng tam giác IEF, IFM, IMN, INE, JEF, JFM, JMN và JNE

Câu hỏi :

Chứng minh rằng tam giác IEF, IFM, IMN, INE, JEF, JFM, JMN và JNE là những tam giác đều cạnh bằng a/2.

* Đáp án

* Hướng dẫn giải

ABCD là tứ diện đều ⇒ tam giác ABC đều ⇒ AB = BC = CA = a

I, E, F lần lượt là trung điểm của các cạnh AC, AB, BC nên ta có IE, IF, EF là các đường trung bình của tam giác ABC

⇒ IE = 1/2 BC = 1/2 a

IF = 1/2 AB = 1/2 a

EF = 1/2 AC = 1/2 a

Nên tam giác IEF là tam giác đều cạnh bằng a/2

Chứng minh tương tự ta có: IFM, IMN, INE, JEF, JFM, JMN và JNE là những tam giác đều cạnh bằng a/2

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải bài tập Hình học 12 !!

Số câu hỏi: 202

Copyright © 2021 HOCTAP247