Cho bốn điểm A(1; 0; 0), B(0; 1; 0), C(0; 0; 1), D(-2; 1; -1) Chứng minh A, B, C, D là bốn đỉnh của một tứ diện

Câu hỏi :

Cho bốn điểm A(1; 0; 0), B(0; 1; 0), C(0; 0; 1), D(-2; 1; -1) Chứng minh A, B, C, D là bốn đỉnh của một tứ diện.

* Đáp án

* Hướng dẫn giải

 

Giải bài 1 trang 91 sgk Hình học 12 | Để học tốt Toán 12

a) Cách 1:

Phương trình đoạn chắn (ABC) là:

Giải bài 1 trang 91 sgk Hình học 12 | Để học tốt Toán 12 hay x + y + z – 1 = 0.

Thay tọa độ điểm D(-2; 1; -1) ta được: (-2) + 1 + (-1) – 1 = -3 ≠ 0

⇒ D không nằm trong (ABC)

⇒ A, B, C, D không đồng phẳng

⇒ A, B, C, D là bốn đỉnh của một tứ diện.

Cách 2:

Giải bài 1 trang 91 sgk Hình học 12 | Để học tốt Toán 12

⇒ A, B, C, D không đồng phẳng

⇒ A, B, C, D là bốn đỉnh của hình tứ diện.

 

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải bài tập Hình học 12 !!

Số câu hỏi: 202

Copyright © 2021 HOCTAP247