Trong không gian với hệ tọa độ Oxyz, cho ba điểm với a, b, c là những số dương thay đổi sao cho . Tính tổng sao cho khoảng cách từ O đến mặt phẳng (ABC) là lớn nhất.

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\) với a, b, c là những số dương thay đổi sao cho \({a^2} + 4{b^2} + 16{c^2} = 49\). Tính tổng \(F = {a^2} + {b^2} + {c^2}\) sao cho khoảng cách từ O đến mặt phẳng (ABC) là lớn nhất.

A. \(F = \frac{{49}}{4}\)

B. \(F = \frac{{49}}{5}\)

C. \(F = \frac{{51}}{4}\)

D. \(F = \frac{{51}}{5}\)

* Đáp án

A

* Hướng dẫn giải

Phương trình mặt phẳng (ABC) là:

\(\begin{array}{l} \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \Rightarrow d = {d_{\left( {O,\left( P \right)} \right)}} = \frac{{\left| {\frac{0}{a} + \frac{0}{b} + \frac{0}{c} - 1} \right|}}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} }}\\ \Rightarrow \frac{1}{{{d^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\\ \Rightarrow {\left( {\frac{7}{d}} \right)^2} = \left( {{a^2} + 4{b^2} + 16{c^2}} \right)\left( {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} \right) \ge {\left( {1 + 2 + 4} \right)^2}\\ \Rightarrow \frac{7}{d} \ge 7 \Rightarrow d \le 1 \end{array}\)

Dấu "=" xảy ra khi:

\(\begin{array}{l} \left( {{a^2} + 4{b^2} + 16{c^2}} \right)\left( {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} \right)\\ \frac{{{a^2}}}{{\frac{1}{{{a^2}}}}} = \frac{{4{b^2}}}{{\frac{1}{{{b^2}}}}} = \frac{{16{c^2}}}{{\frac{1}{{{c^2}}}}} \Leftrightarrow {a^2} = 2{b^2} = 4{c^2}\\ {a^2} + 4{b^2} + 16{c^2} = 49 \Leftrightarrow 4{c^2} + 8{c^2} + 16{c^2} = 49\\ \Rightarrow {c^2} = \frac{{49}}{{28}} = \frac{7}{4} \Rightarrow {a^2} + {b^2} + {c^2} = 7{c^2} = \frac{{49}}{4} \end{array}\)

Copyright © 2021 HOCTAP247