Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1;2;0) và vuông góc với đường thẳng .

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1;2;0) và vuông góc với đường thẳng \(d:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z + 1}}{{ - 1}}\).

A. x + 2y - 5 = 0

B. 2x + y - z + 4 = 0

C. - 2x - y + z - 4 = 0

D. - 2x - y + z + 4 = 0

* Đáp án

D

* Hướng dẫn giải

(P) vuông góc với d nên:

 \(\begin{array}{l} \overrightarrow {{n_{\left( P \right)}}} = \overrightarrow {{u_d}} = \left( {2;1; - 1} \right)\\ \Rightarrow \left( P \right):2\left( {x - 1} \right) + 1\left( {y - 2} \right) - \left( z \right) = 0\\ \Leftrightarrow \left( P \right):2x + y - z - 4 = 0 \end{array}\)

Copyright © 2021 HOCTAP247