Trong không gian với hệ trục Oxyz, cho mặt cầu và đường thẳng . Mặt phẳng nào trong các mặt phẳng sau chứa d và tiếp xúc với mặt cầu (S).

Câu hỏi :

Trong không gian với hệ trục Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x - 4y + 4z - 16 = 0\) và đường thẳng \(d:\frac{{x - 1}}{1} = \frac{{y + 3}}{2} = \frac{z}{2}\). Mặt phẳng nào trong các mặt phẳng sau chứa d và tiếp xúc với mặt cầu (S).

A. \(\left( P \right):2x - 2y + z - 8 = 0\)

B. \(\left( P \right): - 2x + 11y - 10z - 105 = 0\)

C. \(\left( P \right):2x - 11y + 10z - 35 = 0\)

D. \(\left( P \right): - 2x + 2y - z + 11 = 0\)

* Đáp án

C

* Hướng dẫn giải

\(\begin{array}{l} \left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 2} \right)^2} = 25\\ I\left( {1;2; - 2} \right);R = 5 \end{array}\)

Dễ thấy \(A\left( {1; - 3;0} \right);B\left( {3;1;4} \right) \in d\) nên:

\(\begin{array}{l} \left( P \right):a\left( {x - 1} \right) + b\left( {y + 3} \right) + cz = 0\\ a.\left( {3 - 1} \right) + b\left( {1 + 3} \right) + c.4 = 0\\ \Rightarrow a = - 2b - 2c\\ \Rightarrow \left( P \right):\left( { - 2b - 2c} \right)\left( {x - 1} \right) + b\left( {y + 3} \right) + cz = 0 \end{array}\)

(P) tiếp xúc với (S) khi:

 \(\begin{array}{l} {d_{I/\left( P \right)}} = R \Leftrightarrow \frac{{\left| {\left( { - 2b - 2c} \right)\left( {1 - 1} \right) + b\left( {2 + 3} \right) + c\left( { - 2} \right)} \right|}}{{\sqrt {{{\left( {2b - 2c} \right)}^2} + {b^2} + {c^2}} }} = 5\\ \Leftrightarrow \frac{{\left| {5b - 2c} \right|}}{{\sqrt {5{b^2} + 8bc + 5{c^2}} }} = 5\\ \Leftrightarrow 25{b^2} - 20bc + 4{c^2} = 25\left( {5{b^2} + 8bc + 5{c^2}} \right)\\ \Leftrightarrow 100{b^2} + 220bc + 121{c^2} = 0\\ \Leftrightarrow {\left( {10b + 11c} \right)^2} = 0 \Leftrightarrow b = \frac{{ - 11}}{{10}}c\\ \Rightarrow \left( P \right):\left( { - 2.\left( {\frac{{ - 11}}{{10}}} \right) - 2} \right)\left( {x - 1} \right) - \frac{{11}}{{10}}\left( {y + 3} \right) + z = 0\\ \Rightarrow \left( P \right):2x - 11y + 10z - 35 = 0 \end{array}\)

Copyright © 2021 HOCTAP247