Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;2;1) và đường thẳng . Phương trình đường thẳng d đi qua A, vuông góc với d1 và cắt d2 là

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;2;1) và đường thẳng \({d_1}:\frac{x}{2} = \frac{{y - 1}}{1} = \frac{{z - 2}}{2}\). Phương trình đường thẳng d đi qua A, vuông góc với d1 và cắt d2

A. \(d:\frac{{x - 2}}{1} = \frac{{y - 2}}{{ - 3}} = \frac{{z - 1}}{{ - 5}}\)

B. \(d:\frac{{x - 1}}{2} = \frac{y}{3} = \frac{{z - 2}}{{ - 4}}\)

C. \(d:\left\{ \begin{array}{l} x = 2 + t\\ y = 2\\ z = 1 - t \end{array} \right.\left( {t \in R} \right)\)

D. \(d:\frac{{x - 2}}{{ - 1}} = \frac{{y - 2}}{2} = \frac{{z - 1}}{{ - 3}}\)

* Đáp án

C

* Hướng dẫn giải

Gọi \(\left( P \right) = \left\{ \begin{array}{l} A \in \left( P \right)\\ \left( P \right) \bot {d_1} \end{array} \right.,\) khi đó:

\(\begin{array}{l} \left( P \right):2\left( {x - 2} \right) + 1\left( {y - 2} \right) + 2\left( {z - 1} \right) = 0\\ \Rightarrow \left( P \right):2x + y + 2z - 8 = 0\\ B\left( {a;b;c} \right) = \left( {{d_2}} \right) \cap \left( P \right) \Rightarrow \left\{ \begin{array}{l} \frac{{a - 3}}{1} = \frac{{b - 2}}{2} = \frac{c}{3}\\ 2a + b + 2c - 8 = 0 \end{array} \right. \end{array}\)

\( \Rightarrow B\left( {3;2;0} \right) \Rightarrow \overrightarrow {AB} \equiv \overrightarrow {{u_d}} = \left( {1;0; - 1} \right)\)

\( \Rightarrow \left( d \right):\left\{ \begin{array}{l} x = 2 + t\\ y = 2\\ z = 1 - t \end{array} \right.\left( {t \in R} \right)\)

Copyright © 2021 HOCTAP247