Câu hỏi :

Cho \(\int {f\left( x \right){\rm{d}}x = F\left( x \right) + C} \). Khi đó với \(a \ne 0\), a, b là hằng số ta có \(\int {f\left( {ax + b} \right){\rm{d}}x} \) bằng

A. \(\int {f\left( {ax + b} \right){\rm{d}}x}  = \frac{1}{a}F\left( {ax + b} \right) + C\)

B. \(\int {f\left( {ax + b} \right){\rm{d}}x}  = \frac{1}{{a + b}}F\left( {ax + b} \right) + C\)

C. \(\int {f\left( {ax + b} \right){\rm{d}}x}  = F\left( {ax + b} \right) + C\)

D. \(\int {f\left( {ax + b} \right){\rm{d}}x}  = aF\left( {ax + b} \right) + C\)

* Đáp án

A

* Hướng dẫn giải

Theo công thức nguyên hàm mở rộng ta có: \(\int {f\left( {ax + b} \right){\rm{d}}x}  = \frac{1}{a}F\left( {ax + b} \right) + C\)

Copyright © 2021 HOCTAP247