A. \(\int {{{\rm{e}}^x}\sin x{\rm{d}}x} = {{\rm{e}}^x}\cos x - \int {{{\rm{e}}^x}\cos x{\rm{d}}x} .\)
B. \(\int {{{\rm{e}}^x}\sin x{\rm{d}}x} = - {{\rm{e}}^x}\cos x + \int {{{\rm{e}}^x}\cos x{\rm{d}}x} .\)
C. \(\int {{{\rm{e}}^x}\sin x{\rm{d}}x} = {{\rm{e}}^x}\cos x + \int {{{\rm{e}}^x}\cos x{\rm{d}}x} .\)
D. \(\int {{{\rm{e}}^x}\sin x{\rm{d}}x} = - {{\rm{e}}^x}\cos x - \int {{{\rm{e}}^x}\cos x{\rm{d}}x} .\)
A. -2
B. 2
C. 3
D. 4
A. \(S = \frac{7}{3}\)
B. \(S = \frac{8}{3}\)
C. S = 7
D. S = 8
A. F(9) = -6
B. F(9) = 6
C. F(9) = 12
D. F(9) = -12
A. \(F\left( 3 \right) = \ln 2 - 1\)
B. \(F\left( 3 \right) = \ln 2 + 1\)
C. \(F\left( 3 \right) = \frac{1}{2}\)
D. \(F\left( 3 \right) = \frac{7}{4}\)
A. -13
B. -7
C. 13
D. 7
A. \(F\left( x \right) = \frac{{{{\left( {3x + 1} \right)}^6}}}{{18}} + 8\)
B. \(F\left( x \right) = \frac{{{{\left( {3x + 1} \right)}^6}}}{{18}} - 2\)
C. \(F\left( x \right) = \frac{{{{\left( {3x + 1} \right)}^6}}}{{18}}\)
D. \(F\left( x \right) = \frac{{{{\left( {3x + 1} \right)}^6}}}{6}\)
A. \(y = 12{x^6} + 5\)
B. \(y = 2{x^6} + 3\)
C. \(y = 12{x^4}\)
D. \(y = 60{x^4}\)
A. \(\int {0\,{\rm{d}}x} = C\)
B. \(\int {{x^4}\,{\rm{d}}x} = \frac{{{x^5}}}{5} + C\)
C. \(\int {\frac{1}{x}} \,{\rm{d}}x = \ln x + C\)
D. \(\int {{{\rm{e}}^x}} \,{\rm{d}}x = {{\rm{e}}^x} + C\)
A. \(S = \frac{{10}}{3}\)
B. \(S = \frac{8}{3}\)
C. \(S = \frac{{13}}{3}\)
D. \(S = \frac{5}{3}\)
A. (II) và (III)
B. Cả ba mệnh đề
C. (I) và (III)
D. (I) và (II)
A. \(F\left( a \right) - F\left( b \right) = \int\limits_a^b {f\left( t \right){\rm{d}}t} \)
B. \(\int\limits_a^b {f\left( t \right){\rm{d}}t} = \left. {F\left( t \right)} \right|_a^b\)
C. \(\int\limits_a^b {f\left( t \right){\rm{d}}t} = \left. {\left( {\int\limits_{}^{} {f\left( t \right){\rm{d}}t} } \right)} \right|_a^b\)
D. \(\int\limits_a^b {f\left( x \right){\rm{d}}x} = \int\limits_a^b {f\left( t \right){\rm{d}}t} \)
A. 3
B. 0
C. 2
D. 1
A. \(\frac{{ - {x^4} + {x^2} + 3}}{{3x}} + C\)
B. \(\frac{{ - 2}}{{{x^2}}} - 2x + C\)
C. \( - \frac{{{x^4} + {x^2} + 3}}{{3x}} + C\)
D. \(\frac{{ - {x^3}}}{3} - \frac{1}{x} - \frac{x}{3} + C\)
A. \(\int {f\left( {ax + b} \right){\rm{d}}x} = \frac{1}{a}F\left( {ax + b} \right) + C\)
B. \(\int {f\left( {ax + b} \right){\rm{d}}x} = \frac{1}{{a + b}}F\left( {ax + b} \right) + C\)
C. \(\int {f\left( {ax + b} \right){\rm{d}}x} = F\left( {ax + b} \right) + C\)
D. \(\int {f\left( {ax + b} \right){\rm{d}}x} = aF\left( {ax + b} \right) + C\)
A. \(f\left( x \right) = \frac{{{x^2}}}{2} - \cos x + 2\)
B. \(f\left( x \right) = \frac{{{x^2}}}{2} - \cos x - 2\)
C. \(f\left( x \right) = \frac{{{x^2}}}{2} + \cos x\)
D. \(f\left( x \right) = \frac{{{x^2}}}{2} + \cos x + \frac{1}{2}\)
A. \(S = 4\ln 2 + {\rm{e}} - 5\)
B. \(S = 4\ln 2 + {\rm{e}} - 6\)
C. \(S = {{\rm{e}}^2} - 7\)
D. S = e - 3
A. \(S = \int\limits_a^b {\left| {{f_1}\left( x \right) - {f_2}\left( x \right)} \right|{\rm{d}}x} \)
B. \(S = \int\limits_a^b {\left( {{f_1}\left( x \right) - {f_2}\left( x \right)} \right){\rm{d}}x} \)
C. \(S = \int\limits_a^b {\left| {{f_1}\left( x \right) + {f_2}\left( x \right)} \right|{\rm{d}}x} \)
D. \(S = \int\limits_a^b {{f_2}\left( x \right){\rm{d}}x} - \int\limits_a^b {{f_1}\left( x \right){\rm{d}}x} \)
A. \(\frac{2}{{\ln 3}}\)
B. 2ln3
C. 1,5
D. 2
A. \(\frac{1}{8}.\sqrt[3]{{({x^2} + 1)}} + C.\)
B. \(\frac{3}{8}.\sqrt[3]{{({x^2} + 1)}} + C.\)
C. \(\frac{3}{8}.\sqrt[3]{{{{({x^2} + 1)}^4}}} + C.\)
D. \(\frac{1}{8}.\sqrt[3]{{{{({x^2} + 1)}^4}}} + C.\)
A. \(I = \frac{\pi }{4}\)
B. I = -1
C. I = 0
D. I = 1
A. \({x^5} + 2x + C\)
B. \(\frac{1}{5}{x^5} + 2x + C\)
C. 10x + C
D. \({x^5} + 2\)
A. \(5\cos 5x + C\)
B. \( - \frac{1}{5}\cos 5x + 2x + C\)
C. \(\frac{1}{5}\cos 5x + 2x + C\)
D. \(\cos 5x + 2x + C\)
A. \(\frac{{{x^4}}}{4} - 1\)
B. \(3{x^2}\)
C. \(\frac{{{x^4}}}{4} + 1\)
D. \(\frac{{{x^4}}}{4}\)
A. \(V = \pi \int\limits_1^3 {{{\left[ {f\left( x \right)} \right]}^2}{\rm{d}}x} \)
B. \(V = \frac{1}{3}\int\limits_1^3 {{{\left[ {f\left( x \right)} \right]}^2}{\rm{d}}x} \)
C. \(V = {\pi ^2}\int\limits_1^3 {{{\left[ {f\left( x \right)} \right]}^2}{\rm{d}}x} \)
D. \(V = \int\limits_1^3 {{{\left[ {f\left( x \right)} \right]}^2}{\rm{d}}x} \)
A. \(\int\limits_a^b {f\left( x \right){\rm{d}}x} - \int\limits_b^c {f\left( x \right){\rm{d}}x} \)
B. \(\int\limits_a^b {f\left( x \right){\rm{d}}x} + \int\limits_b^c {f\left( x \right){\rm{d}}x} \)
C. \( - \int\limits_a^b {f\left( x \right){\rm{d}}x} + \int\limits_b^c {f\left( x \right){\rm{d}}x} \)
D. \(\int\limits_a^b {f\left( x \right){\rm{d}}x} - \int\limits_c^b {f\left( x \right){\rm{d}}x} \)
A. \(- 3\sin x + \frac{1}{x} + C\)
B. \(3\sin x - \frac{1}{x} + C\)
C. \(3\cos x + \frac{1}{x} + C\)
D. \(3\cos x + \ln x + C\)
A. 101376
B. \({{\rm{e}}^2}{\rm{.}}{x^{{\rm{e}} - 1}} + C\)
C. \(\frac{{{x^{{\rm{e}} + 1}}}}{{{\rm{e}} + 1}} + 4x + C\)
D. \(\frac{{{\rm{e}}{\rm{.}}{x^{{\rm{e}} + 1}}}}{{{\rm{e}} + 1}} + 4x + C\)
A. \(3\ln 2 - 1\)
B. \(3\ln 2 \)
C. \(3\ln 2 - 2\)
D. \(3\ln 2 - 3\)
A. \(\frac{{96}}{{64}}\)
B. \(\frac{{97}}{{64}}\)
C. \(\frac{{67}}{{64}}\)
D. \(\frac{{99}}{{64}}\)
A. \(\frac{7}{2}\)
B. \(\frac{9}{2}\)
C. \(\frac{5}{2}\)
D. \(\frac{3}{2}\)
A. \(\frac{{11}}{5}\)
B. \(\frac{{12}}{5}\)
C. \(\frac{{13}}{5}\)
D. \(\frac{{14}}{5}\)
A. 4
B. 6
C. 8
D. 10
A. \(\frac{{{e^2} + 1}}{2}\)
B. \(\frac{{{e^2} - 1}}{2}\)
C. \(\frac{{{e^2} + 1}}{4}\)
D. \(\frac{{{e^2} - 1}}{4}\)
A. \(\frac{{e - 1}}{2}\)
B. \(\frac{{e + 1}}{2}\)
C. \(\frac{{e - 1}}{4}\)
D. \(\frac{{e+ 1}}{4}\)
A. \(\frac{{34}}{{15}}\)
B. \(\frac{{36}}{{15}}\)
C. \(\frac{{38}}{{15}}\)
D. \(\frac{{39}}{{15}}\)
A. \(\frac{{38}}{{15}}\)
B. \(\frac{{38}}{{10}}\)
C. \(\frac{{38}}{{25}}\)
D. \(\frac{{38}}{{35}}\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247