Tích phân \int\limits_0^2 {\frac{x}{{{x^2} + 3}}{\rm{d}}x} bằng

Câu hỏi :

Tích phân \(\int\limits_0^2 {\frac{x}{{{x^2} + 3}}{\rm{d}}x}\)  bằng

A. \(\frac{1}{2}\log \frac{7}{3}\)

B. \(\ln \frac{7}{3}\)

C. \(\frac{1}{2}\ln \frac{7}{3}\)

D. \(\frac{1}{2}\ln \frac{3}{7}\)

* Đáp án

C

* Hướng dẫn giải

\(\int\limits_0^2 {\frac{x}{{{x^2} + 3}}{\rm{d}}x}  = \frac{1}{2}\int\limits_0^2 {\frac{1}{{{x^2} + 3}}\,{\rm{d}}\left( {{x^2} + 3} \right)}  = \left. {\frac{1}{2}\ln \left| {{x^2} + 3} \right|} \right|_0^2 = \frac{1}{2}\ln \frac{7}{3}\)

Copyright © 2021 HOCTAP247