Câu hỏi :

Tích phân \(I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {\sin ax + \cos ax} \right)dx} \), với a khác 0 có giá trị là:

A. \(I = \frac{{\sqrt 2 }}{a}\left[ {\sin \left( {a\frac{\pi }{2} - \frac{\pi }{4}} \right) - \sin \left( {a\frac{\pi }{2} + \frac{\pi }{4}} \right)} \right]\)

B. \(I = \frac{{\sqrt 2 }}{a}\left[ {\sin \left( {a\frac{\pi }{2} - \frac{\pi }{4}} \right) + \sin \left( {a\frac{\pi }{2} + \frac{\pi }{4}} \right)} \right]\)

C. \(I = \frac{{\sqrt 2 }}{a}\left[ {\sin \left( {a\frac{\pi }{2} - \frac{\pi }{4}} \right) + \sin \left( { - a\frac{\pi }{2} + \frac{\pi }{4}} \right)} \right]\)

D. \(I = \frac{{\sqrt 2 }}{a}\left[ { - \sin \left( {a\frac{\pi }{2} - \frac{\pi }{4}} \right) + \sin \left( {a\frac{\pi }{2} + \frac{\pi }{4}} \right)} \right]\)

* Đáp án

B

* Hướng dẫn giải

\(\begin{array}{l} I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {\sin ax + \cos ax} \right)dx} \\ = \left. {\left( { - \frac{1}{a}\cos ax + \frac{1}{a}\sin ax} \right)} \right|_{ - \frac{\pi }{2}}^{\frac{\pi }{2}}\\ = \left. {\left( {\frac{{\sqrt 2 }}{a}\sin \left( {ax - \frac{\pi }{4}} \right)} \right)} \right|_{ - \frac{\pi }{2}}^{\frac{\pi }{2}}\\ = \frac{{\sqrt 2 }}{a}\left[ {\sin \left( {a\frac{\pi }{2} - \frac{\pi }{4}} \right) + \sin \left( {a\frac{\pi }{2} + \frac{\pi }{4}} \right)} \right] \end{array}\)

Copyright © 2021 HOCTAP247