A. \(I = - a\ln 2\)
B. \(I = - 2\ln 2\)
C. \(I = 2\ln 2\)
D. \(I = a\ln 2\)
A. \(I = \frac{{\sqrt 2 }}{a}\left[ {\sin \left( {a\frac{\pi }{2} - \frac{\pi }{4}} \right) - \sin \left( {a\frac{\pi }{2} + \frac{\pi }{4}} \right)} \right]\)
B. \(I = \frac{{\sqrt 2 }}{a}\left[ {\sin \left( {a\frac{\pi }{2} - \frac{\pi }{4}} \right) + \sin \left( {a\frac{\pi }{2} + \frac{\pi }{4}} \right)} \right]\)
C. \(I = \frac{{\sqrt 2 }}{a}\left[ {\sin \left( {a\frac{\pi }{2} - \frac{\pi }{4}} \right) + \sin \left( { - a\frac{\pi }{2} + \frac{\pi }{4}} \right)} \right]\)
D. \(I = \frac{{\sqrt 2 }}{a}\left[ { - \sin \left( {a\frac{\pi }{2} - \frac{\pi }{4}} \right) + \sin \left( {a\frac{\pi }{2} + \frac{\pi }{4}} \right)} \right]\)
A. \(I = a\ln \left| a \right| + \frac{{{a^2} + 1}}{{2a}}\)
B. \(I = a\ln a + \frac{{{a^2} + 1}}{{2a}}\)
C. \(I = a\ln \left| a \right| + \frac{{{a^2} - 1}}{{2a}}\)
D. \(I = a\ln a + \frac{{{a^2} - 1}}{{2a}}\)
A. \(- \frac{{\ln 2}}{2}\)
B. ln 2 - 1
C. \(\frac{3}{2} - \ln 4\)
D. \(- \frac{{\ln 3}}{3}\)
A. \(2\sqrt 5 \)
B. \(\frac{2}{{\sqrt 5 }}\)
C. \(\frac{1}{{\sqrt 5 }}\)
D. \(\sqrt 5 \)
A. \(I = \frac{7}{3}a - b\ln 2\)
B. \(I = 3a - b\ln 2\)
C. \(I = \frac{7}{3}a + b\ln 2\)
D. \(I = 3a + b\ln 2\)
A. \(I = \frac{a}{2} + \frac{b}{3}\)
B. \(I = \frac{a}{3} + \frac{b}{3}\)
C. \(I = \frac{a}{2} + \frac{b}{2}\)
D. \(I = \frac{a}{3} + \frac{b}{2}\)
A. \(I = - b\ln 3\)
B. \(I = \frac{a}{2} - b\ln 3\)
C. \(I = \frac{a}{2} + b\ln 3\)
D. I = b ln 3
A. \(I = - \frac{1}{2} - \frac{1}{a} + {a^2}\)
B. \(I = - \frac{3}{2} - \frac{1}{a} + {a^2}\)
C. \(I = - \frac{5}{2} - \frac{1}{a} + {a^2}\)
D. \(I = - \frac{7}{2} - \frac{1}{a} + {a^2}\)
A. \(I = \frac{{2\sqrt {{{\left( {a + 1} \right)}^5}} }}{5} + \frac{{2\sqrt {{{\left( {a + 1} \right)}^3}} }}{3} + \frac{4}{{15}}\)
B. \(I = \frac{{2\sqrt {{{\left( {a + 1} \right)}^5}} }}{5} - \frac{{2\sqrt {{{\left( {a + 1} \right)}^3}} }}{3} + \frac{4}{{15}}\)
C. \(I = \frac{{2\sqrt {{{\left( {a + 1} \right)}^5}} }}{5} + \frac{{2\sqrt {{{\left( {a + 1} \right)}^3}} }}{3} - \frac{4}{{15}}\)
D. \(I = \frac{{2\sqrt {{{\left( {a + 1} \right)}^5}} }}{5} - \frac{{2\sqrt {{{\left( {a + 1} \right)}^3}} }}{3} - \frac{4}{{15}}\)
A. \(I = \frac{3}{2}\)
B. \(I = \frac{1}{6}\)
C. \(I = \frac{-3}{2}\)
D. \(I = \frac{-1}{6}\)
A. \(I = \frac{4}{3}\)
B. \(I = \frac{1}{2}\)
C. \(I = - \frac{4}{3}\)
D. \(I = - \frac{1}{2}\)
A. \(I = - \frac{7}{6}\)
B. \(I = \frac{{17}}{6}\)
C. \(I = \frac{7}{6}\)
D. \(I = - \frac{{17}}{6}\)
A. \(I = 3 - 2\ln 3\)
B. \(I = -2\ln 3\)
C. \(I = 3 + 2\ln 3\)
D. \(I = 3 - 3\ln 3\)
A. \(I = \frac{\pi }{2}\)
B. \(I = \frac{\pi }{3}\)
C. \(I = \frac{\pi }{4}\)
D. \(I = \frac{\pi }{6}\)
A. \(I = \frac{{4\sqrt 2 }}{3} + 2\)
B. \(I = \frac{{4\sqrt 2 }}{3} - 2\)
C. \(I = \frac{{4\sqrt 2 }}{3} - 1\)
D. \(I = \frac{{4\sqrt 2 }}{3} + 1\)
A. I = ln3
B. I = -ln2
C. I = -ln3
D. I = ln2
A. \(I = \frac{{\ln 2 + \ln \left| {a + 2} \right|}}{2}\)
B. \(I = \frac{{\ln 2 - \ln \left| {a + 2} \right|}}{2}\)
C. \(I = \frac{{ - \ln 2 - \ln \left| {a + 2} \right|}}{2}\)
D. \(I = \frac{{ - \ln 2 + \ln \left| {a + 2} \right|}}{2}\)
A. \(I = \frac{{a\left( {a - 2} \right)}}{4}\)
B. \(I = \frac{{a\left( {a - 2} \right)}}{2}\)
C. \(I = \frac{{a\left( {a + 2} \right)}}{4}\)
D. \(I = \frac{{a\left( {a + 2} \right)}}{2}\)
A. \(I = \frac{{19 + 17\sqrt[{}]{3}}}{{\sqrt 2 }}\)
B. \(I = \frac{{19 + 17\sqrt[4]{3}}}{{\sqrt 2 }}\)
C. \(I = \frac{{ - 19 + 17\sqrt[{}]{3}}}{{\sqrt 2 }}\)
D. \(I = \frac{{19 - 17\sqrt[4]{3}}}{{\sqrt 2 }}\)
A. \(I = \frac{{4\sqrt 2 - 2}}{3}\)
B. \(I = \frac{{4\sqrt 2 + 2}}{3}\)
C. \(I = \frac{{2\sqrt 2 - 2}}{3}\)
D. \(I = \frac{{2\sqrt 2 + 2}}{3}\)
A. \(I = \frac{{87}}{5}\)
B. \(I = \frac{{67}}{5}\)
C. \(I = \frac{{77}}{5}\)
D. \(I = \frac{{57}}{5}\)
A. \(I = \frac{1}{3}\ln 2\)
B. \(I = \frac{1}{2}\ln 2\)
C. \(I = \frac{1}{6}\ln 2\)
D. \(I = \ln 2\)
A. \(I = 2 - \ln 3 + \ln 5\)
B. \(I = 2 - 2\ln 3 + 2\ln 5\)
C. \(I = 2 - 2\ln 3 + \ln 5\)
D. \(I = 2 - \ln 3 - 2\ln 5\)
A. \(I = \frac{\pi }{6} - \frac{{\sqrt 3 }}{4}\)
B. \(I = \frac{\pi }{3} - \frac{{\sqrt 3 }}{8}\)
C. \(I = \frac{\pi }{6} - \frac{{\sqrt 3 }}{8}\)
D. \(I = \frac{\pi }{3} - \frac{{\sqrt 3 }}{8}\)
A. \(I = \frac{{\sqrt 3 }}{{16}}\ln \left( {\frac{{\sqrt 3 + 2}}{{ - \sqrt 3 + 2}}} \right) + \frac{3}{8}\)
B. \(I = \frac{{\sqrt 3 }}{8}\ln \left( {\frac{{\sqrt 3 + 2}}{{ - \sqrt 3 + 2}}} \right) + \frac{3}{8}\)
C. \(I = - \frac{{\sqrt 3 }}{8}\ln \left( {\frac{{\sqrt 3 + 2}}{{ - \sqrt 3 + 2}}} \right) + \frac{3}{8}\)
D. \(I = - \frac{{\sqrt 3 }}{{16}}\ln \left( {\frac{{\sqrt 3 + 2}}{{ - \sqrt 3 + 2}}} \right) + \frac{3}{8}\)
A. \(I = \frac{{7\pi }}{6} - 4\sqrt 3 + 8\)
B. \(I = \frac{{7\pi }}{6} - 4\sqrt 3 - 8\)
C. \(I = \frac{{7\pi }}{6} + 4\sqrt 3 - 8\)
D. \(I = \frac{{7\pi }}{6} + 4\sqrt 3 + 8\)
A. \(I = \frac{{5\pi }}{3}\)
B. \(I = \frac{{5\pi }}{6}\)
C. \(I = - \frac{{5\pi }}{3}\)
D. \(I = - \frac{{5\pi }}{6}\)
A. \(I = - \ln \frac{{3 + 2\sqrt 3 }}{3}\)
B. \(I = - \ln \frac{{ - 3 + 2\sqrt 3 }}{3}\)
C. \(I = \ln \frac{{3 + 2\sqrt 3 }}{3}\)
D. \(I = \ln \frac{{ - 3 + 2\sqrt 3 }}{3}\)
A. \(a = \frac{{\ln 2}}{{1 - \ln 2}}\)
B. \(a = \frac{{\ln 2}}{{2 - 2\ln 2}}\)
C. \(a = \frac{{\ln 2}}{{1 + \ln 2}}\)
D. \(a = \frac{{\ln 2}}{{2 + 2\ln 2}}\)
A. \(\frac{{3\pi }}{{13}}\)
B. \(\frac{{3\pi }}{{11}}\)
C. \(\frac{{3\pi }}{{10}}\)
D. \(\frac{{3\pi }}{{9}}\)
A. \(\frac{{{\pi ^2}}}{5}\)
B. \(\frac{{{\pi ^2}}}{4}\)
C. \(\frac{{{\pi ^2}}}{2}\)
D. \(\frac{{{\pi ^2}}}{3}\)
A. \(\frac{\pi }{2}\left( {{e^2} + 1} \right)\)
B. \(\frac{\pi }{2}\left( {{e^2} - 1} \right)\)
C. \(\frac{\pi }{3}\left( {{e^2} - 1} \right)\)
D. \(\frac{\pi }{3}\left( {{e^2}+1} \right)\)
A. \(\frac{{4\pi }}{7}\)
B. \(\frac{{3\pi }}{7}\)
C. \(\frac{{2\pi }}{7}\)
D. \(\frac{{\pi }}{7}\)
A. -2
B. -4
C. 2
D. -8
A. \(I=\frac{\pi}{4}-\frac{1}{3}\)
B. \(I=-\frac{\pi}{4}-\frac{2}{3}\)
C. \(I=\frac{\pi}{4}+\frac{1}{3}\)
D. \(I=-\frac{\pi}{4}+\frac{2}{3}\)
A. \(I=\frac{1}{3}\)
B. \(I=\frac{4}{3}\)
C. \(I=\frac{2}{3}\)
D. I = 1
A. \(I=\frac{\pi}{8} \ln 3\)
B. \(I=\frac{\pi}{4} \ln 2\)
C. \(I=\frac{\pi}{8} \ln 3\)
D. \(I=\frac{\pi}{8} \ln 2\)
A. \(\frac{3}{8}\left[\sqrt[3]{3^{5}}-\sqrt[3]{2^{5}}\right]\)
B. \(\frac{3}{8}\left[\sqrt[3]{3^{5}}-\sqrt[3]{2^{4}}\right]\)
C. \(\frac{3}{8}\left[\sqrt[3]{3^{4}}-\sqrt[3]{2^{5}}\right]\)
D. \(\frac{3}{8}\left[\sqrt[3]{3^{4}}-\sqrt[3]{2^{4}}\right]\)
A. \(\frac{7}{4}\)
B. \(\frac{9}{4}\)
C. \(\frac{11}{4}\)
D. \(\frac{5}{4}\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247