Tích phân \(I = \int\limits_0^a {x\sqrt {x + 1} } dx\) có giá trị là

Câu hỏi :

Tích phân \(I = \int\limits_0^a {x\sqrt {x + 1} } dx\) có giá trị là:

A. \(I = \frac{{2\sqrt {{{\left( {a + 1} \right)}^5}} }}{5} + \frac{{2\sqrt {{{\left( {a + 1} \right)}^3}} }}{3} + \frac{4}{{15}}\)

B. \(I = \frac{{2\sqrt {{{\left( {a + 1} \right)}^5}} }}{5} - \frac{{2\sqrt {{{\left( {a + 1} \right)}^3}} }}{3} + \frac{4}{{15}}\)

C. \(I = \frac{{2\sqrt {{{\left( {a + 1} \right)}^5}} }}{5} + \frac{{2\sqrt {{{\left( {a + 1} \right)}^3}} }}{3} - \frac{4}{{15}}\)

D. \(I = \frac{{2\sqrt {{{\left( {a + 1} \right)}^5}} }}{5} - \frac{{2\sqrt {{{\left( {a + 1} \right)}^3}} }}{3} - \frac{4}{{15}}\)

* Đáp án

B

* Hướng dẫn giải

\(\begin{array}{l} I = \int\limits_0^a {x\sqrt {x + 1} } dx\\ = \int\limits_0^a {\left( {x + 1} \right)\sqrt {x + 1} } dx - \int\limits_0^a {\sqrt {x + 1} } dx\\ = \int\limits_0^a {{{\left( {x + 1} \right)}^{\frac{3}{2}}}} dx - \int\limits_0^a {{{\left( {x + 1} \right)}^{\frac{1}{2}}}} dx\\ {\rm{ = }}\left. {\left[ {\frac{2}{5}{{\left( {x + 1} \right)}^{\frac{5}{2}}}} \right]} \right|_0^a - \left. {\left[ {\frac{2}{3}{{\left( {x + 1} \right)}^{\frac{3}{2}}}} \right]} \right|_0^a\\ {\rm{ = }}\frac{2}{5}\sqrt {{{\left( {x + 1} \right)}^5}} - \frac{2}{3}\sqrt {{{\left( {x + 1} \right)}^3}} + \frac{4}{{15}} \end{array}\)

Copyright © 2021 HOCTAP247