Tích phân \(I = \int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\frac{{\sin x}}{{\sin x + \cos x}}dx} \) có giá trị là:

Câu hỏi :

Tích phân \(I = \int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\frac{{\sin x}}{{\sin x + \cos x}}dx} \) có giá trị là:

A. \(I = \frac{\pi }{{12}} + \ln \left( {\sqrt 3  + 1} \right)\)

B. \(I = \frac{\pi }{{12}} + \ln \frac{{\sqrt 3  + 1}}{4}\)

C. \(I = \frac{\pi }{{12}} - \frac{{\ln \left( {\frac{{\sqrt 3  + 1}}{2}} \right)}}{2}\)

D. \(I = \frac{\pi }{{12}} + \ln \frac{{\sqrt 3  + 1}}{2}\)

* Đáp án

C

* Hướng dẫn giải

Xét \({I_1} = \int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\frac{{\cos x}}{{\sin x + \cos x}}dx} \)

Ta có:

\(\begin{array}{l} \left\{ \begin{array}{l} {I_2} = I + {I_1} = \int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {dx} \\ {I_3} = {I_1} - I = \int\limits_{\frac{1}{2} + \frac{{\sqrt 3 }}{2}}^1 {\frac{1}{t}dt} \end{array} \right.\\ \Rightarrow I = \frac{{{I_2} - {I_3}}}{2} = \frac{\pi }{{12}} - \frac{{\ln \frac{{1 + \sqrt 3 }}{2}}}{2},{\rm{ }}t = \sin x + \cos x \end{array}\)

Copyright © 2021 HOCTAP247