Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, AB = a. SA vuông góc với mặt phẳng đáy và SA = a. Gọi M là trung điểm của BC. Khoảng cách giữa hai đường thẳng AC và SM...

Câu hỏi :

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, AB = a. SA vuông góc với mặt phẳng đáy và SA = a. Gọi M là trung điểm của BC. Khoảng cách giữa hai đường thẳng AC và SM bằng

A. \(\frac{{\sqrt 3 a}}{3}\)

B. \(\frac{{\sqrt 2 a}}{2}\)

C. \(\frac{a}{2}\)

D. \(\frac{{\sqrt 5 a}}{5}\)

* Đáp án

D

* Hướng dẫn giải

Gọi N là trung điểm AB, ta có AC // MN

Suy ra \(AC//\left( {AMN} \right) \Rightarrow d\left( {AC,SM} \right) = d\left( {AC,(SMN} \right) = d\left( {A,\left( {SMN} \right)} \right)\)

Ta có

\(\left. \begin{array}{l} \left( {SAB} \right) \bot \left( {SMN} \right)(MN \bot \left( {SAB} \right)\\ \left( {SAB} \right) \cap \left( {SMN} \right) = SN\\ AH \bot SN \end{array} \right\} \Rightarrow AH \bot \left( {SMN} \right)\)

Suy ra \(AH = d\left( {A,\left( {SMN} \right)} \right)\).

\(AH = \frac{{AS.AN}}{{\sqrt {A{S^2} + A{N^2}} }} = \frac{{a.\frac{a}{2}}}{{\sqrt {{a^2} + {{\left( {\frac{a}{2}} \right)}^2}} }} = \frac{{\sqrt 5 a}}{5}.\)

Copyright © 2021 HOCTAP247