A. \(\frac{{{a^3}}}{6}\)
B. \(\frac{{{a^3}}}{3}\)
C. \(\frac{{{a^3}\sqrt 6 }}{3}\)
D. \(\frac{{{a^3}\sqrt 6 }}{6}\)
A
Gọi D là hình chiếu vuông góc của S xuống mặt phẳng (ABC).
\(\left\{ \begin{array}{l} AB \bot SB\\ AB \bot SD \end{array} \right. \Rightarrow AB \bot \left( {SBD} \right) \Rightarrow AB \bot BD\)
\(\left\{ \begin{array}{l} AC \bot SA\\ AC \bot SD \end{array} \right. \Rightarrow AC \bot \left( {SAD} \right) \Rightarrow AC \bot AD\,\)
Tam giác ABC có \(\widehat {CAB} = 135^\circ \Rightarrow \widehat {BAD} = 45^\circ \).
Tam giác ABD vuông tại B có \(\widehat {BAD} = 45^\circ \) suy ra tam giác ABD vuông cân và \(AD = a\sqrt 2 \).
Từ đó có tam giác ACD vuông cân tại A ⇒ tứ giác ABCD là hình thang vuông tại B và D.
Trong mặt phẳng (SBD), hạ \(DH \bot SB\,\,\left( {H \in SB} \right)\). Dễ chứng minh \(DH \bot \left( {SAB} \right)\).
Trong mặt phẳng (SAD), hạ \(DK \bot SA\,\,\left( {K \in SA} \right)\). Dễ chứng minh \(DK \bot \left( {SAC} \right)\).
Gọi \(\alpha\) là góc giữa hai mặt phẳng (SAB) và (SAC) ta có: \(\alpha = \widehat {\left( {DH,DK} \right)} = \widehat {HDK} = 30^\circ \) do tam giác DHK vuông tại H.
Đặt SD = x, (x > 0). Tam giác DHK vuông tại H có
\(\cos \widehat {HDK} = \frac{{HD}}{{DK}} \Rightarrow \frac{{\sqrt 3 }}{2} = \frac{{ax}}{{\sqrt {{a^2} + {x^2}} }}.\frac{{\sqrt {2{a^2} + {x^2}} }}{{\sqrt 2 .ax}}\)
\( \Leftrightarrow \sqrt 6 \sqrt {{a^2} + {x^2}} = 2\sqrt {2{a^2} + {x^2}} \Leftrightarrow 6{a^2} + 6{x^2} = 8{a^2} + 4{x^2} \Leftrightarrow x = a\)
\({V_{S.ABC}} = \frac{1}{6}.SD.AB.AC.\sin \widehat {BAC} = \frac{{{a^3}}}{6}\)
Vậy thể tích khối S.ABC bằng \(\frac{{{a^3}}}{6}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247