Tập nghiệm của bất phương trình \({\log ^2}_2\left( {2x} \right) - 5{\log _2}x - 5 \ge 0\) là

Câu hỏi :

Tập nghiệm của bất phương trình \({\log ^2}_2\left( {2x} \right) - 5{\log _2}x - 5 \ge 0\) là

A. \(\left( { - \infty ;\frac{1}{2}} \right] \cup \left[ {16; + \infty } \right)\)

B. \(\left( { - \infty ;\frac{1}{2}} \right) \cup \left( {16; + \infty } \right)\)

C. \(\left( {0;\frac{1}{2}} \right] \cup \left[ {16; + \infty } \right)\)

D. \(\left( {0;\frac{1}{2}} \right) \cup \left( {16; + \infty } \right)\)

* Đáp án

C

* Hướng dẫn giải

Điều kiện: x > 0.

Viết lại bất phương trình:

\(\begin{array}{l} {\log ^2}_2\left( {2x} \right) - 5{\log _2}x - 5 \ge 0\\ \Leftrightarrow {\left( {1 + {{\log }_2}x} \right)^2} - 5{\log _2}x - 5 \ge 0\\ \Leftrightarrow {\log ^2}_2x - 3{\log _2}x - 4 \ge 0\\ \Leftrightarrow \left[ \begin{array}{l} {\log _2}x \le - 1\\ {\log _2}x \ge 4 \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} x \le \frac{1}{2}\\ x \ge 16 \end{array} \right. \end{array}\)

Kết hợp điều kiện, ta có tập nghiệm của bất phương trình là: \(T = \left( {0;\frac{1}{2}} \right] \cup \left[ {16; + \infty } \right)\).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Lê Lai

Số câu hỏi: 48

Copyright © 2021 HOCTAP247