Trang chủ Đề thi & kiểm tra Lớp 12 Toán học Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Lê Lai

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Lê Lai

Câu 2 : Cho cấp số nhân (un) có u1 = 3 công bội \(q = - \frac{1}{3}\). Tính u4.

A. \( - \frac{1}{{27}}\)

B. \( - \frac{1}{9}\)

C. \( \frac{1}{9}\)

D. \(- \frac{1}{27}\)

Câu 3 : Nghiệm của phương trình 2x = 4 là

A. x = 1

B. x = 2

C. x = 3

D. x = 4

Câu 4 : Thể tích khối chóp có đường cao bằng a và diện tích đáy bằng \(2{a^2}\sqrt 3 \) là

A. \(\frac{{2{a^3}\sqrt 3 }}{3}\)

B. \(\frac{{2{a^3}\sqrt 3 }}{2}\)

C. \(\frac{{2{a^3}}}{3}\)

D. \(\frac{{5{a^3}}}{{\sqrt 3 }}\)

Câu 6 : Cho khối trụ có độ dài đường sinh \(l = a\sqrt 3 \) và bán kính đáy \(r = a\sqrt 2 \). Thể tích của khối trụ đã cho bằng

A. \(\frac{{2\sqrt 3 }}{3}\pi {a^3}\)

B. \(2\sqrt 3 \pi {a^3}\)

C. \(\sqrt 3 \pi {a^3}\)

D. \(\frac{{2\sqrt 3 }}{2}\pi {a^3}\)

Câu 7 : Gọi R là bán kính, S là diện tích mặt cầu và V là thể tích khối cầu. Công thức nào sau sai?

A. \(S = \pi {R^2}\)

B. \(V = \frac{4}{3}\pi {R^3}\)

C. \(S = 4\pi {R^2}\)

D. \(3V = S.R\)

Câu 8 : Cho hàm số y = f(x) xác định trên R và có bảng biến thiên như sau:

A. Hàm số f(x) đồng biến trên khoảng (-1;4)

B. Hàm số f(x) nghịch biến trên khoảng \(\left( { - \infty ; - 2} \right)\)

C. Hàm số f(x) nghịch biến trên khoảng (-2;2)

D. Hàm số f(x) đồng biến trên khoảng (0;2)

Câu 9 : Với a là một số thực dương tùy ý, \({\log _2}\left( {8{a^3}} \right)\) bằng    

A. \(\frac{3}{2}{\log _2}a\)

B. \(\frac{1}{3}{\log _2}a\)

C. \(3 + 3{\log _2}a\)

D. \(3{\log _2}a\)

Câu 11 : Cho hàm số y = f(x) có bảng biến thiên như sau: 

A. \( - \frac{{25}}{4}\)

B. \( - \frac{{\sqrt 2 }}{2}\)

C. -6

D. 0

Câu 12 : Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

A. \(y = \frac{{x - 2}}{{x - 1}}\)

B. \(y = \frac{{x - 2}}{{x + 1}}\)

C. \(y = \frac{{2x + 1}}{{x - 1}}\)

D. \(y = - {x^3} + 3x + 2\)

Câu 13 : Tiệm cận ngang của đồ thị hàm số \(y = \frac{{x + 1}}{{1 - 2x}}\)

A. \(x = \frac{1}{2}\)

B. \(y = \frac{1}{2}\)

C. \(x =- \frac{1}{2}\)

D. \(y = -\frac{1}{2}\)

Câu 17 : Mô đun của số phức \(z = \left( {3 + 2i} \right)i\) là

A. 3

B. 2

C. \(\sqrt {13} \)

D. 5

Câu 18 : Cho hai số phức \({z_1} = 1 + 2i,{z_2} = 3 - i\). Tìm số phức \(z = \frac{{{z_2}}}{{{z_1}}}\).

A. \(z = \frac{1}{{10}} + \frac{7}{{10}}i\)

B. \(z = \frac{1}{5} + \frac{7}{5}i\)

C. \(z = \frac{1}{5} - \frac{7}{5}i\)

D. \(z = - \frac{1}{{10}} + \frac{7}{{10}}i\)

Câu 21 : Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 8y - 2z - 4 = 0\). Tâm và bán kính của mặt cầu (S) lần lượt là 

A. \(I\left( {2; - 4;1} \right),R = 5\)

B. \(I\left( { - 2;4; - 1} \right),R = 25\)

C. \(I\left( {2; - 4;1} \right),R = \sqrt {21} \)

D. \(I\left( { - 2;4; - 1} \right),R = 21\)

Câu 22 : Trong không gian Oxyz, cho mặt phẳng (P): 3x - 4z + 2 = 0. Véc tơ nào dưới đây là một véc tơ pháp tuyến của mặt phẳng (P)?

A. \(\overrightarrow {{n_1}} = \left( {3\,; - 4;\,2} \right)\)

B. \(\overrightarrow {{n_2}} = \left( { - 3;0;4} \right)\)

C. \(\overrightarrow {{n_3}} = \left( {3; - 4;0} \right)\)

D. \(\overrightarrow {{n_4}} = \left( {4\,;0\,; - 3} \right)\)

Câu 29 : Tập nghiệm của bất phương trình \({\log ^2}_2\left( {2x} \right) - 5{\log _2}x - 5 \ge 0\) là

A. \(\left( { - \infty ;\frac{1}{2}} \right] \cup \left[ {16; + \infty } \right)\)

B. \(\left( { - \infty ;\frac{1}{2}} \right) \cup \left( {16; + \infty } \right)\)

C. \(\left( {0;\frac{1}{2}} \right] \cup \left[ {16; + \infty } \right)\)

D. \(\left( {0;\frac{1}{2}} \right) \cup \left( {16; + \infty } \right)\)

Câu 31 : Xét \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \), nếu đặt \(u = 2 + {x^3}\) thì \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \) bằng

A. \(\int\limits_{ - 1}^1 {\sqrt {{u^5}} du} \)

B. \(\frac{1}{3}\int\limits_{ - 1}^1 {\sqrt {{u^5}} du} \)

C. \(\int\limits_1^3 {\sqrt {{u^5}} du} \)

D. \(\frac{1}{3}\int\limits_1^3 {\sqrt {{u^5}} du} \)

Câu 32 : Diện tích S của hình phẳng giới hạn bởi các đường \(y = 2{x^2} + 3x + 1\,,\,y = {x^3} + 1\,\) được tính bởi công thức nào dưới đây ?

A. \(S = \pi \int\limits_{ - 1}^3 {{{\left( {{x^3} - 2{x^2} - 3x} \right)}^2}dx} \)

B. \(S = \int\limits_{ - 1}^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \)

C. \(S = \int\limits_{ - 1}^0 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} + \int\limits_0^3 {\left( {2{x^2} + 3x - {x^3}} \right)dx} \)

D. \(S = \int\limits_{ - 1}^0 {\left( {2{x^2} + 3x - {x^3}} \right)dx} + \int\limits_0^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \)

Câu 34 : Gọi z0 là nghiệm phức có phần ảo âm của phương trình: \({z^2} - 4z + 9 = 0\). Tìm tọa độ của điểm biểu diễn số phức \(\omega = \left( {1 + i} \right){z_0}\).

A. \(\left( {2 - \sqrt 5 \,;\,2 + \sqrt 5 } \right)\)

B. \(\left( {2 + \sqrt 5 \,;\,2 - \sqrt 5 } \right)\)

C. \(\left( {2 - \sqrt 5 \,;\, - 2 - \sqrt 5 } \right)\)

D. \(\left( {2 + \sqrt 5 \,;\, - 2 - \sqrt 5 } \right)\)

Câu 36 : Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x - y + z - 10 = 0,\) điểm A(1;3;2) và đường thẳng \(d:\left\{ \begin{array}{l} x = - 2 + 2t\\ y = 1 + t\\ z = 1 - t \end{array} \right.\). Tìm phương trình đường thẳng \(\Delta \) cắt (P) và d lầnlượt tại hai điểm N và M sao cho A là trung điểm của đoạn MN.

A. \(\frac{{x - 6}}{7} = \frac{{y - 1}}{{ - 4}} = \frac{{z + 3}}{{ - 1}}\)

B. \(\frac{{x + 6}}{7} = \frac{{y + 1}}{4} = \frac{{z - 3}}{{ - 1}}\)

C. \(\frac{{x - 6}}{7} = \frac{{y - 1}}{4} = \frac{{z + 3}}{{ - 1}}\)

D. \(\frac{{x + 6}}{7} = \frac{{y + 1}}{{ - 4}} = \frac{{z - 3}}{{ - 1}}\)

Câu 39 : Cho hàm số \(y = m{x^3} + 3m{x^2} + 3x + 1\). Tìm tập hợp tất cả các số thực m để hàm số đồng biến trên R.

A. \(m \ge 1 \vee m \le 0.\)

B. \(0 \le m < 1\)

C. \(0 \le m \le 1.\)

D. \(0 < m \le 1.\)

Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).

Copyright © 2021 HOCTAP247