Cho hình nón có thiết diện qua trục là tam giác vuông cân có cạnh huyền bằng . Diện tích xung quanh của hình nón đã cho bằng

Câu hỏi :

Cho hình nón có thiết diện qua trục là tam giác vuông cân có cạnh huyền bằng \(2a\sqrt 2 \). Diện tích xung quanh của hình nón đã cho bằng

A. \(\sqrt 2 \pi {a^2}\)

B. \(2\sqrt 2 \pi {a^2}\)

C. \(4\pi {a^2}\)

D. \(4\sqrt 2 \pi {a^2}\)

* Đáp án

B

* Hướng dẫn giải

Thiết diện qua trục là tam giác SAB vuông cân tại S, có \(AB = 2a\sqrt 2 \) nên bán kính đáy \(r = \frac{{AB}}{2} = a\sqrt 2 \)

Đường sinh \(l = SA = \sqrt {\frac{{A{B^2}}}{2}} = \sqrt {\frac{{{{\left( {2a\sqrt 2 } \right)}^2}}}{2}} = 2a\)

Vậy diện tích xung quanh của hình nón là \({S_{xq}} = \pi rl = \pi .a\sqrt 2 .2a = 2\sqrt 2 \pi {a^2}\).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Lê Lai

Số câu hỏi: 48

Copyright © 2021 HOCTAP247