A. 2
B. 4
C. 1
D. \(\sqrt3\)
A
Giả sử ta có mặt cắt của hình nón cụt và các đại lượng như hình vẽ.
Gọi \(\alpha\) là góc cần tìm.
Xét tam giác AHD vuông tại H có \(DH = h\,,\,AH = R - r \Rightarrow h = 2{r_0} = AH.tam\alpha = \left( {R - r} \right)\tan \alpha \,\left( 1 \right)\)
Thể tích khối cầu là \({V_1} = \frac{4}{3}\pi r_0^3 = \frac{{\pi {h^3}}}{6}\)
Thể tích của (N2) là \({V_2} = \frac{1}{3}\pi h\left( {{R^2} + {r^2} + Rr} \right)\)
\(\frac{{{V_1}}}{{{V_2}}} = \frac{1}{2} \Rightarrow {h^2} = {R^2} + {r^2} + Rr\,\,\left( 2 \right)\)
Ta có BC = R + r (tính chất hai tiếp tuyến cắt nhau)
Mà \({h^2} = B{C^2} - {\left( {R - r} \right)^2} = 4Rr\,\,\left( 3 \right)\)
Từ \(\left( 2 \right)\,,\,\left( 3 \right)\, \Rightarrow {\left( {R - r} \right)^2} = Rr\,\left( 4 \right)\)
Từ \(\left( 1 \right)\,,\,\left( 3 \right)\,,\,\left( 4 \right) \Rightarrow {h^2} = {\left( {R - r} \right)^2}.{\tan ^2}\alpha = 4{\left( {R - r} \right)^2}\) (vì \(\alpha\) là góc nhọn)
\( \Rightarrow {\tan ^2}\alpha = 4 \Rightarrow \tan \alpha = 2\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247