Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho giá trị lớn nhất của hàm số trên đoạn [0;3] bằng 7. Tổng các phần tử của S bằng

Câu hỏi :

Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho giá trị lớn nhất của hàm số \(f\left( x \right) = \left| {m\left( {{x^2} - 2x + 3} \right) - 5m + 1} \right|\) trên đoạn [0;3] bằng 7.  Tổng các phần tử của S bằng

A. \(- \frac{1}{3}\)

B. 2

C. \(\frac{2}{3}\)

D. \(\frac{8}{3}\)

* Đáp án

C

* Hướng dẫn giải

Đặt \(t = {x^2} - 2x + 3\) vì \(x \in \left[ {0;\,3} \right]\) nên \(t \in \left[ {2;\,6} \right]\).

Ta có \(\mathop {\max }\limits_{\left[ {0;\,3} \right]} \left| {m\left( {{x^2} - 2x + 3} \right) - 5m + 1} \right| = 7 \Leftrightarrow \mathop {\max }\limits_{\left[ {2;\,6} \right]} \left| {mt - 5m + 1} \right| = 7\)

\( \Leftrightarrow \max \left\{ {\left| { - 3m + 1} \right|,\left| {m + 1} \right|} \right\} = 7 \Leftrightarrow \frac{1}{2}\left( {\left| { - 3m + 1 + m + 1} \right| + \left| { - 3m + 1 - m - 1} \right|} \right) = 7\).

\( \Leftrightarrow \frac{1}{2}\left( {\left| { - 2m + 2} \right| + \left| { - 4m} \right|} \right) = 7 \Leftrightarrow \left[ \begin{array}{l} m = - 2\\ m = \frac{8}{3} \end{array} \right.\)

Vậy có 2 giá trị \(m = - 2,\,m = \frac{8}{3}\) thỏa mãn và tổng của chúng bằng \(\frac{2}{3}\).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Lê Lai

Số câu hỏi: 48

Copyright © 2021 HOCTAP247