Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích là V. Điểm P là trung điểm của SC. Mặt phẳng qua AP cắt hai cạnh SB và SD lần lượt tại M và N. Gọi V1 là thể tích...

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích là V. Điểm P là trung điểm của SC. Mặt phẳng \((\alpha)\) qua AP cắt hai cạnh SB và SD lần lượt tại M và N. Gọi V1 là thể tích của khối chóp S.AMPN. Tìm giá trị nhỏ nhất của tỷ số \(\dfrac{V_1}V\)?

A. \(\frac{2}{3}\)

B. \(\frac{1}{8}\)

C. \(\frac{1}{3}\)

D. \(\frac{3}{8}\)

* Đáp án

C

* Hướng dẫn giải

Từ giả thiết và cách dựng thiết diện ta có :

\(a = \frac{{SA}}{{SA}} = 1;b = \frac{{SB}}{{SM}};c = \frac{{SC}}{{SP}} = 2;d = \frac{{S{\rm{D}}}}{{SN}} \Rightarrow a + c = b + d = 3\)

Khi đó \(\frac{{{V_1}}}{V} = \frac{{a + b + c + d}}{{4{\rm{a}}.b.c.d}} = \frac{6}{{4.1.2.b{\rm{d}}}} = \frac{3}{{4b.d}} \ge \frac{3}{{4{{\left( {\frac{{b + d}}{2}} \right)}^2}}} = \frac{1}{3} \Rightarrow \frac{{{V_1}}}{V} \ge \frac{1}{3}\)

\( \Rightarrow Min\frac{{{V_1}}}{V} = \frac{1}{3}.\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Lê Lai

Số câu hỏi: 48

Copyright © 2021 HOCTAP247