A. 11 quý
B. 12 quý
C. 13 quý
D. 14 quý
C
Gọi A là số tiền gửi ban đầu với lãi suất r% một quý.
Sau quý thứ nhất, người đó nhận được số tiền là: \({S_1} = A\left( {1 + r} \right)\).
Sau quý thứ hai, người đó nhận được số tiền là: \({S_2} = {S_1}\left( {1 + r} \right) = A{\left( {1 + r} \right)^2}\).
…
Sau quý thứ n, người đó nhận được số tiền là: \({S_n} = {S_{n - 1}}\left( {1 + r} \right) = A{\left( {1 + r} \right)^n}\).
Theo bài ra với A = 120 triệu đồng, r = 1,75% một quý, để người đó nhận được số tiền nhiều hơn 150 triệu đồng bao gồm gốc và lãi, ta có bất phương trình sau:
\(\begin{array}{l} 120{\left( {1 + \frac{{1.75}}{{100}}} \right)^n} > 150\\ \Leftrightarrow {\left( {1,0175} \right)^n} > 1,25\\ \Leftrightarrow n > {\log _{1,0175}}1,25 \approx 12,86 \end{array}\)
Vì n là số nguyên dương nên n = 13
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247