Cho hai số thực dương x, y thỏa mãn . Tìm giá trị lớn nhất Pmax của biểu thức .

Câu hỏi :

Cho hai số thực dương x, y thỏa mãn \({2^x} + {2^y} = 4\). Tìm giá trị lớn nhất Pmax của biểu thức \(P = \left( {2{x^2} + y} \right)\left( {2{y^2} + x} \right) + 9xy\).

A. \({P_{\max }} = \frac{{27}}{2}\)

B. \({P_{\max }} = 18\)

C. \({P_{\max }} = 27\)

D. \({P_{\max }} = 12\)

* Đáp án

B

* Hướng dẫn giải

Ta có \(4 = {2^x} + {2^y} \ge 2\sqrt {{2^{x + y}}} \Leftrightarrow 4 \ge {2^{x + y}} \Leftrightarrow x + y \le 2\).

Suy ra \(xy \le {\left( {\frac{{x + y}}{2}} \right)^2} = 1\).

Khi đó \(P = \left( {2{x^2} + y} \right)\left( {2{y^2} + x} \right) + 9xy = 2\left( {{x^3} + {y^3}} \right) + 4{x^2}{y^2} + 10xy\).

\(P = 2\left( {x + y} \right)\left[ {{{\left( {x + y} \right)}^2} - 3xy} \right] + {\left( {2xy} \right)^2} + 10xy\)

\( \le 4\left( {4 - 3xy} \right) + 4{x^2}{y^2} + 10xy = 16 + 2{x^2}{y^2} + 2xy\left( {xy - 1} \right) \le 18\)

Vậy Pmax = 18 khi x = y = 1.

Copyright © 2021 HOCTAP247