Cho hình chóp S.ABCD có đáy là tam giác vuông tại A, AB = 2a, AC = 4a, SA vuông góc với mặt phẳng đáy và SA = a( minh hoạ như hình bên) . Gọi M là trung điểm của AB. Khoảng cách gi...

Câu hỏi :

Cho hình chóp S.ABCD có đáy là tam giác vuông tại A, AB = 2a, AC = 4a, SA vuông góc với mặt phẳng đáy và SA = a( minh hoạ như hình bên) . Gọi M là trung điểm của AB. Khoảng cách giữa hai đường thẳng SM và BC bằng

A. \(\frac{{2a}}{3}\)

B. \(\frac{{\sqrt 6 a}}{3}\)

C. \(\frac{{\sqrt 3 a}}{3}\)

D. \(\frac{a}{2}\)

* Đáp án

A

* Hướng dẫn giải

Gọi N  là trung điểm của AC và M là trung điểm của AB ⇒ MN là đường trung bình của tam giác ABC \( \Rightarrow \,\,MN\parallel BC\,\,\, \Rightarrow \,\,BC\parallel \left( {SMN} \right)\).

Suy ra \(d\left( {BC,SM} \right) = d\left( {BC,\left( {SMN} \right)} \right) = d\left( {B,\left( {SMN} \right)} \right) = d\left( {A,\left( {SMN} \right)} \right) = h\).

Do AS, AM, AN đôi một vuông  góc nên tứ diện SAMN là tứ diện vuông tại A.

Áp dụng công thức tính đường cao của tứ diện vuông ta có : 

\(\frac{1}{{{h^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{A{M^2}}} + \frac{1}{{A{N^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{4{a^2}}} + \frac{1}{{{a^2}}} = \frac{9}{{4{a^2}}} \Rightarrow h = \frac{{2a}}{3}\)

Copyright © 2021 HOCTAP247