A. \(I = (x\cos x)\left| \begin{array}{l} \frac{\pi }{2}\\ 0 \end{array} \right. - \int\limits_0^{\frac{\pi }{2}} {\cos xdx} \)
B. \(I = ( - x\cos x)\left| \begin{array}{l} \frac{\pi }{2}\\ 0 \end{array} \right. + \int\limits_0^{\frac{\pi }{2}} {(\frac{{{x^2}}}{2}\cos x)dx} \)
C. \(I = ( - x\cos x)\left| \begin{array}{l} 1\\ 0 \end{array} \right. + \int\limits_0^1 {\cos xdx} \)
D. \(I = ( - x\cos x)\left| \begin{array}{l} \frac{\pi }{2}\\ 0 \end{array} \right. + \int\limits_0^{\frac{\pi }{2}} {\cos xdx} \)
D
Đặt \(\left\{ \begin{array}{l} u = x\\ dv = \sin xdx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = dx\\ v = - \cos x \end{array} \right.\)
Do vậy \(I = ( - x\cos x)\left| \begin{array}{l} \frac{\pi }{2}\\ 0 \end{array} \right. + \int\limits_0^{\frac{\pi }{2}} {\cos xdx} \)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247