Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = 3, AD = 2. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với (ABCD). Tính thể tích V của khối cầu ngoại tiếp h...

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = 3, AD = 2. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với (ABCD). Tính thể tích V của khối cầu ngoại tiếp hình chóp S.ABCD.

A. \(V = \frac{{10\pi }}{3}\)

B. \(V = \frac{{32\pi }}{3}\)

C. \(V = \frac{{20\pi }}{3}\)

D. \(V = \frac{{16\pi }}{3}\)

* Đáp án

B

* Hướng dẫn giải

Gọi I, K lần lượt là trung điểm của AB, CD. Gọi G là trọng tâm của tam giác SAB.

Ta có: \(\left\{ \begin{array}{l} SI \bot AB,\,IK \bot AB\\ \left( {SAB} \right) \bot \left( {ABCD} \right) \end{array} \right. \Rightarrow \left\{ \begin{array}{l} SI \bot \left( {ABCD} \right)\\ IK \bot \left( {SAB} \right) \end{array} \right.\).

Gọi O là tâm của hình chữ nhật ABCD. Từ điểm O dựng đường thẳng song song SI và từ điểm G dựng đường thẳng song song IK thì ta có giao điểm H của hai đường đó là tâm của mặt cầu ngoại tiếp hình chóp S.ABCD.

Ta có \(SI = \frac{{3\sqrt 3 }}{2} \Rightarrow SG = \sqrt 3 \), \(GH = IO = \frac{{AD}}{2} = 1\). Xét tam giác SGH vuông tại G ta có: \(SH = \sqrt {S{G^2} + G{H^2}} = 2\)

Vậy thể tích mặt cầu cần tìm là \(V = \frac{{4\pi {{.2}^3}}}{3} = \frac{{32\pi }}{3}\).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Kim Sơn A

Số câu hỏi: 49

Copyright © 2021 HOCTAP247