Cho bất phương trình \({\log _7}\left( {{x^2} + 2x + 2} \right) + 1 > {\log _7}\left( {{x^2} + 6x + 5 + m} \right)\). Có bao nhiêu giá trị nguyên của tham số m để bất phương trình...

Câu hỏi :

Cho bất phương trình \({\log _7}\left( {{x^2} + 2x + 2} \right) + 1 > {\log _7}\left( {{x^2} + 6x + 5 + m} \right)\). Có bao nhiêu giá trị nguyên của tham số m để bất phương trình trên có tập ngiệm chứa khoảng (1;3)?

A. 33

B. 35

C. 36

D. 34

* Đáp án

D

* Hướng dẫn giải

\(bpt \Leftrightarrow \left\{ \begin{array}{l} {x^2} + 6x + 5 + m > 0\\ {\log _7}\left[ {7\left( {{x^2} + 2x + 2} \right)} \right] > {\log _7}\left( {{x^2} + 6x + 5 + m} \right) \end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l} m > - {x^2} - 6x - 5\\ 6{x^2} + 8x + 9 > m \end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l} m > \mathop {\max }\limits_{\left( {1;\,3} \right)} f\left( x \right)\\ m < \mathop {\min }\limits_{\left( {1;\,3} \right)} g\left( x \right) \end{array} \right.\) với \(f\left( x \right) = - {x^2} - 6x - 5;g\left( x \right) = 6{x^2} + 8x + 9\)

Xét sự biến thiên của hai hàm số f(x) và g(x)

\(f'\left( x \right) = - 2x - 6 < 0,\,\forall x \in \left( {1;\,3} \right)\) ⇒ f(x) luôn nghịch biến trên khoảng (1;3)

\( \Rightarrow \mathop {\max }\limits_{\left( {1;\,3} \right)} f\left( x \right) = f\left( 1 \right) = - 12\)

\(g'\left( x \right) = 12x + 8 > 0,\,\forall x \in \left( {1;\,3} \right)\) ⇒ g(x) luôn đồng biến trên khoảng (1;3)

\(\Rightarrow \mathop {\min }\limits_{\left( {1;\,3} \right)} g\left( x \right) = g\left( 1 \right) = 23\)

Khi đó -12 < m < 23

Mà m thuộc Z nên \(m \in \left\{ { - 11;\, - 10;\,\,...;\,22} \right\}\)

Vậy có tất cả 34 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Nho Quan A

Số câu hỏi: 43

Copyright © 2021 HOCTAP247