Thầy Đông gửi tổng cộng 320 triệu đồng ở hai ngân hàng X và Y theo phương thức lãi kép. Số tiền thứ nhất gửi ở ngân hàng X với lãi suất 2,1% một quý trong thời gian 15 tháng.

Câu hỏi :

Thầy Đông gửi tổng cộng 320 triệu đồng ở hai ngân hàng X và Y theo phương thức lãi kép. Số tiền thứ nhất gửi ở ngân hàng X với lãi suất 2,1% một quý trong thời gian 15 tháng. Số tiền còn lại gửi ở ngân hàng Y với lãi suất 0,75% một tháng trong thời gian 9 tháng. Tổng tiền lãi đạt được ở hai ngân hàng là 27 507 768,13 đồng (chưa làm tròn). Hỏi số tiền Thầy Đông gửi lần lượt ở ngân hàng X và Y là bao nhiêu?

A. 140 triệu và 180 triệu

B. 120 triệu và 200 triệu

C. 200 triệu và 120 triệu

D. 180 triệu và 140 triệu

* Đáp án

A

* Hướng dẫn giải

Gọi số tiền Thầy Đông gửi ở hai ngân hàng X và Y lần lượt là x, y (triệu)

Theo giả thiết \(x + y = {320.10^6}\) (1)

+ Tổng số tiền cả vốn lẫn lãi nhận được ở ngân hàng X sau 15 tháng (5 quý) là \(A = x{\left( {1 + 0,021} \right)^5} = x{\left( {1,021} \right)^5}\)

⇒ Số lãi sau 15 tháng là \({r_A} = x{\left( {1,021} \right)^5} - x = x\left[ {{{\left( {1,021} \right)}^5} - 1} \right]\)

+Tổng số tiền cả vốn lẫn lãi nhận được ở ngân hàng Y sau 9 tháng là

\(B = y{\left( {1 + 0,0073} \right)^9} = y{\left( {1,0073} \right)^9}\)

⇒ Số lãi sau 9 tháng là \({r_B} = y{\left( {1,0073} \right)^9} - y = y\left[ {{{\left( {1,0073} \right)}^9} - 1} \right]\)

Theo giả thiết \(x\left[ {{{\left( {1,021} \right)}^5} - 1} \right] + y\left[ {{{\left( {1,0073} \right)}^9} - 1} \right] = 27{\rm{ }}507{\rm{ }}768,13\) (2)

Từ (1) và (2) ⇒ \(\left\{ \begin{array}{l} x \simeq 140\\ y \simeq 180 \end{array} \right.\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Nho Quan A

Số câu hỏi: 43

Copyright © 2021 HOCTAP247