Cho các số thực x, y, z thỏa mãn các điều kiện và . Khi đó giá trị nhỏ nhất của biểu thức tương ứng bằng:

Câu hỏi :

Cho các số thực x, y, z thỏa mãn các điều kiện \(x \ge 0,y \ge 0,z \ge - 1\) và \({\log _2}\frac{{x + y + 1}}{{4x + y + 3}} = 2x - y\). Khi đó giá trị nhỏ nhất của biểu thức \(T = \frac{{{{(x + z + 1)}^2}}}{{3x + y}} + \frac{{{{(y + 2)}^2}}}{{x + 2z + 3}}\) tương ứng bằng:

A. \(4\sqrt 2 \)

B. 6

C. \(6\sqrt 3 \)

D. 4

* Đáp án

D

* Hướng dẫn giải

Từ giả thiết ta có:  

\(\begin{array}{l} {\log _2}\frac{{x + y + 1}}{{4x + y + 3}} = 2x - y \Leftrightarrow 1 + {\log _2}\frac{{x + y + 1}}{{4x + y + 3}} = 2x - y + 1\\ \Leftrightarrow {\log _2}\frac{{2x + 2y + 2}}{{4x + y + 3}} = (4x + y + 3) - (2x + 2y + 2)\\ \Leftrightarrow f(2x + 2y + 2) = f(4x + y + 3) \Leftrightarrow 2x + 2y + 2 = 4x + y + 3 \Leftrightarrow y = 2x + 1 \end{array}\)

 (Với hàm \(f(t) = {\log _2}t + t\) là đơn điệu trên \((0; + \infty )\))

Thay vào biểu thức T ta được: \(T = \frac{{{{(x + z + 1)}^2}}}{{3x + y}} + \frac{{{{(y + 2)}^2}}}{{x + 2z + 3}} = \frac{{{{(x + z + 1)}^2}}}{{5x + y}} + \frac{{{{(2x + 3)}^2}}}{{x + 2z + 3}}\)

Áp dụng bất đẳng thức: \(T = \frac{{{{(x + z + 1)}^2}}}{{5x + y}} + \frac{{{{(2x + 3)}^2}}}{{x + 2z + 3}} \ge \frac{{{{(3x + z + 4)}^2}}}{{6x + 2z + 4}} = \frac{1}{2}.\frac{{{{(3x + z + 4)}^2}}}{{3x + z + 2}}\)

Đặt \(t = 3x + z + 2 \Rightarrow T \ge \frac{1}{2}(t + \frac{4}{t} + 4) \ge \frac{1}{2}(2\sqrt {t.\frac{4}{t}} + 4) = 4\)

Dấu "=" xảy ra khi : \(\left\{ \begin{array}{l} y = 2x + 1\\ t = 2 = 3x + z + 2\\ \frac{{x + z + 1}}{{5x + 1}} = \frac{{2x + 3}}{{x + 2z + 3}} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = z = 0\\ y = 1 \end{array} \right.\)

Suy ra giá trị nhỏ nhất của biểu thức \(T = 4\).

Copyright © 2021 HOCTAP247