Nếu \(\int {f(x)\,dx = {e^x} + {{\sin }^2}x} + C\) thì f(x) bằng

Câu hỏi :

Nếu \(\int {f(x)\,dx = {e^x} + {{\sin }^2}x}  + C\) thì f(x) bằng

A. \({e^x} + 2\sin x\). 

B. \({e^x} + \sin 2x\).

C. \({e^x} + {\cos ^2}x\).        

D. \({e^x} - 2\sin x\).

* Đáp án

B

* Hướng dẫn giải

Ta có

\(\left\{ \begin{array}{l}d\left( {{e^x}} \right) = {e^x}dx\\d\left( {{{\sin }^2}x} \right) = 2\sin x.\cos x\,dx\end{array} \right. \\ \Rightarrow \left\{ \begin{array}{l}d\left( {{e^x}} \right) = {e^x}dx\\d\left( {{{\sin }^2}x} \right) = \sin 2x\,dx\end{array} \right.\)

Khi đó ta có: \(f\left( x \right) = {e^x} + \sin 2x\)

Copyright © 2021 HOCTAP247