A. \(V = {\pi ^2}\int\limits_0^1 {{x^4}\,dx} \)
B. \(V = \pi \int\limits_0^1 {{y^2}\,dy}\)
C. \(V = \pi \int\limits_0^1 {{y^4}\,dy}\)
D. \(V = \pi \int\limits_0^1 { - {y^4}\,dy}\)
A. \(I = \sqrt 2 \cos x\left| \begin{array}{l}2004\pi \\0\end{array} \right.\).
B. \(I = 2004\int\limits_0^\pi {\sqrt {1 - \cos 2x} } \,dx\).
C. \(I = 4008\sqrt 2 \).
D. \(I = 2004\sqrt 2 \int\limits_0^\pi {\sin x\,dx} \).
A. \(4\cos x + \ln x + C\).
B. \(4\cos x + \dfrac{1}{x} + C\).
C. \(4\sin x - \dfrac{1}{x} + C\).
D. \(4\sin x + \dfrac{1}{x} + C\).
A. \( - {\sin ^4}x + C\).
B. \(\dfrac{1}{4}{\sin ^4}x + C\).
C. \( - \dfrac{1}{4}{\sin ^4}x + C\).
D. \({\sin ^4}x + C\).
A. \(S = \pi \).
B. \(S = 2\pi \).
C. \(S = \dfrac{\pi }{2}\).
D. Cả 3 phương án trên đều sai.
A. \({2009^x}\ln 2009\).
B. \(\dfrac{{{{2009}^x}}}{{\ln 2009}}\).
C. \({2009^x} + 1\).
D. \({2009^x}\).
A. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)
B. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g\left( x \right){\rm{d}}x} .\)
C. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)
D. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g'\left( x \right){\rm{d}}x} .\)
A. 1
B. 3
C. 80
D. 9
A. 3
B. 2
C. 10
D. 0
A. \({e^x} + 2\sin x\).
B. \({e^x} + \sin 2x\).
C. \({e^x} + {\cos ^2}x\).
D. \({e^x} - 2\sin x\).
A. \(\int {2\sin x\,dx = {{\sin }^2}x} + C\)
B. \(\int {2\sin x\,dx = 2\cos x} + C\)
C. \(\int {2\sin x\,dx = \sin 2x} + C\)
D. \(\int {2\sin x\,dx = - 2\cos x} + C\)
A. \(\dfrac{1}{3}\)
B. 17
C. 7
D. 9
A. \(I = {e^{\dfrac{\pi }{2}}} + 2\)
B. \(I = {e^{\dfrac{\pi }{2}}} + 1\)
C. \(I = {e^{\dfrac{\pi }{2}}} - 2\)
D. \(I = {e^{\dfrac{\pi }{2}}}\)
A. 46
B. 44
C. 36
D. 54
A. \(\left\{ \begin{array}{l}u = x\\dv = x\cos x\,dx\end{array} \right.\).
B. \(\left\{ \begin{array}{l}u = {x^2}\\dv = \cos x\,dx\end{array} \right.\).
C. \(\left\{ \begin{array}{l}u = \cos x\\dv = {x^2}\,dx\end{array} \right.\).
D. \(\left\{ \begin{array}{l}u = {x^2}\cos x\\dv = \,dx\end{array} \right.\)
A. \(2\left( {{2^{\sqrt x }} - 1} \right) + C\).
B. \({2^{\sqrt x }} + C\).
C. \({2^{\sqrt x + 1}}\).
D. \(2\left( {{2^{\sqrt x }} + 1} \right) + C\).
A. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,du} \)
B. \(I = \int\limits_0^1 {\left( {1 - u} \right){e^{ - u}}\,du} \).
C. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,{e^{ - u}}du} \).
D. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,{e^{2u}}du} \).
A. \(\dfrac{{2{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{3} + 6 - 4\sqrt 3 \).
B. \(\dfrac{{{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{6} + 6 - 4\sqrt 3 \).
C. \(\dfrac{{2{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{3} + 3 - 2\sqrt 3 \).
D. 0
A. \(\dfrac{2}{9}{\left( {{x^3} + 5} \right)^{\dfrac{3}{2}}} + C\).
B. \(\dfrac{2}{9}{\left( {{x^3} + 5} \right)^{\dfrac{2}{3}}} + C\).
C. \(2{\left( {{x^3} + 5} \right)^{\dfrac{3}{2}}} + C\).
D. \(2{\left( {{x^3} + 5} \right)^{\dfrac{2}{3}}} + C\).
A. \(\cot x - 2\tan x + C\).
B. \( - \cot x + 2\tan x + C\).
C. \(\cot x + 2\tan x + C\).
D. \( - \cot x - 2\tan x + C\)
A. \(\dfrac{{146}}{{15}}\)
B. \(\dfrac{{116}}{{15}}\)
C. \(\dfrac{{886}}{{105}}\)
D. \(\dfrac{{105}}{{886}}\).
A. \(F(x) = {e^x} + {x^2} + \dfrac{3}{4}\).
B. \(F(x) = {e^x} + {x^2} + \dfrac{1}{2}\).
C. \(F(x) = {e^x} + {x^2} + \dfrac{5}{2}\).
D. \(F(x) = {e^x} + {x^2} - \dfrac{1}{2}\).
A. \( - \dfrac{6}{{45}}.\)
B. \(\dfrac{{45}}{6}.\)
C. \(\dfrac{6}{{45}}.\)
D. \( - \dfrac{{45}}{6}.\)
A. \(\dfrac{3}{8}\).
B. \( - \dfrac{3}{8}\).
C. \(\dfrac{8}{3}\).
D. \( - \dfrac{8}{3}\).
A. x = 5;y = 11
B. x = - 5;y = 11
C. x = - 11;y = - 5
D. x = 11;y = 5
A. tam giác vuông tại \(A\)
B. tam giác cân tại \(A\).
C. tam giác vuông cân tại \(A\).
D. Tam giác đều.
A. \(\sqrt 6 \).
B. \(\dfrac{{\sqrt 6 }}{3}\).
C. \(\dfrac{{\sqrt 6 }}{2}\).
D. \(\dfrac{1}{2}\).
A. \(2\sqrt {83} \).
B. \(\sqrt {83} \).
C. 83
D. \(\dfrac{{\sqrt {83} }}{2}\).
A. 2
B. -1
C. -2
D. 1
A. \({x^2} + {y^2} + {z^2} - 2x = 0.\)
B. \(2{x^2} + 2{y^2} = {\left( {x + y} \right)^2} - {z^2} + 2x - 1.\)
C. \({x^2} + {y^2} + {z^2} + 2x - 2y + 1 = 0.\)
D. \({\left( {x + y} \right)^2} = 2xy - {z^2} + 1 - 4x.\)
A. 4
B. 3
C. 2
D. 1
A. \(I\left( {1; - 2;0} \right).\)
B. \(I\left( { - 1;2;0} \right).\)
C. \(I\left( {1;2;0} \right).\)
D. \(I\left( { - 1; - 2;0} \right).\)
A. \(\overrightarrow b = \left( { - 2; - 6; - 8} \right).\)
B. \(\overrightarrow b = \left( { - 2; - 6;8} \right).\)
C. \(\overrightarrow b = \left( { - 2;6;8} \right).\)
D. \(\overrightarrow b = \left( {2; - 6; - 8} \right).\)
A. 10
B. 13
C. 12
D. 14
A. \(\sqrt 6 .\)
B. \(\sqrt 8 .\)
C. \(\sqrt {10} .\)
D. \(\sqrt {12} .\)
A. \(Q = \left( { - 2; - 3;4} \right)\)
B. \(Q = \left( {2;3;4} \right)\)
C. \(Q = \left( {3;4;2} \right)\)
D. \(Q = \left( { - 2; - 3; - 4} \right)\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247