Cho mặt cầu \(\left( S \right)\): \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 4\). Phương trình mặt cầu nào sau đây là phương trình mặt...

Câu hỏi :

Cho mặt cầu \(\left( S \right)\): \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 4\). Phương trình mặt cầu nào sau đây là phương trình mặt cầu đối xứng với mặt cầu (S) qua trục Oz:

A. \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 4.\)

B. \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 4.\)

C. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 4.\)

D. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 4.\)

* Đáp án

A

* Hướng dẫn giải

Mặt cầu \(\left( S \right)\) tâm \(I\left( { - 1;1;2} \right)\), bán kính \(R = 2\). Do mặt cầu \(\left( {S'} \right)\) đối xứng với \(\left( S \right)\) qua trục Oz nên tâm I' của \(\left( {S'} \right)\) đối xứng với I qua trục Oz, bán kính \(R' = R = 2\).

Ta có : \(I'\left( {1; - 1;2} \right)\). Vậy \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 4.\)

Copyright © 2021 HOCTAP247