Trang chủ Đề thi & kiểm tra Lớp 12 Toán học Đề thi giữa HK2 môn Toán 12 năm 2021 - Trường THPT Lê Thị Hồng Gấm

Đề thi giữa HK2 môn Toán 12 năm 2021 - Trường THPT Lê Thị Hồng Gấm

Câu 1 : Tìm \(\int {\dfrac{{5x + 1}}{{{x^2} - 6x + 9}}\,dx} \).

A. \(I = \ln |x - 3| - \dfrac{{16}}{{x - 3}} + C\)

B. \(I = \dfrac{1}{5}\ln |x - 3| - \dfrac{{16}}{{x - 3}} + C\)

C. \(I = \ln |x - 3| + \dfrac{{16}}{{x - 3}} + C\)

D. \(I = 5\ln |x - 3| - \dfrac{{16}}{{x - 3}} + C\)

Câu 2 : Thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi các đường \(y = \tan x,\,\,y = 0,\,\,x = \dfrac{\pi }{3}\) quanh Ox là:

A. \(\sqrt 3 - \dfrac{\pi }{3}\)

B. \(\dfrac{\pi }{3} - 3\)

C. \(\dfrac{{{\pi ^2}}}{3} - \pi \sqrt 3 \)

D. \(\pi \sqrt 3 - \dfrac{{{\pi ^2}}}{3}\)

Câu 3 : Tìm \(I = \int {\cos \left( {4x + 3} \right)\,dx} \).

A. \(I = \sin \left( {4x + 2} \right) + C\)

B. \(I = - \sin \left( {4x + 3} \right) + C\)

C. \(I = \dfrac{1}{4}\sin \left( {4x + 3} \right) + C\)

D. \(I = 4\sin \left( {4x + 3} \right) + C\)

Câu 4 : Đặt \(F(x) = \int\limits_1^x {t\,dt} \). Khi đó F’(x) là hàm số nào dưới đây ?

A. F’(x) = x.

B. F’(x) = 1.

C. F’(x) = x - 1.

D. F’(x) = \(\dfrac{{{x^2}}}{2} - \dfrac{1}{2}\).

Câu 5 : Hàm số nào dưới đây không là nguyên hàm của \(f(x) = \dfrac{{2x\left( {x + 3} \right)}}{{{{\left( {x + 1} \right)}^2}}}\) ?

A. \(2\ln |x + 1| + \dfrac{{2{x^2} + 2x + 4}}{{x + 1}}\).

B. \(\ln \left( {x + 1} \right) + \dfrac{{2{x^2} + 2x + 4}}{{x + 1}}\).

C. \(\ln {\left( {x + 1} \right)^2} + \dfrac{{2{x^2} + 3x + 5}}{{x + 1}}\). 

D. \(\dfrac{{2{x^2} + 3x + 5}}{{x + 1}} + \ln {e^2}{\left( {x + 1} \right)^2}\).

Câu 8 : Tính tích phân \(\int\limits_a^{\dfrac{\pi }{2} - a} {{\sin }^2}x\,dx;\,\,\dfrac{\pi }{2} > a > 0 \)

A. \( - \dfrac{1}{4}\sin \left( {\pi  - 2a} \right) - \sin 2a + \pi  - 4a\).

B. \(  \dfrac{1}{4}\left( {\sin \left( {\pi  - 2a} \right) - \sin 2a + \pi  - 4a} \right)\).

C. \( - \dfrac{1}{4}\left( {\sin \left( {\pi  - 2a} \right) - \sin 2a + \pi  - 4a} \right)\).

D. 0

Câu 10 : Trong các hàm số f(x) dưới đây, hàm số nào thỏa mãn đẳng thức \(\int {f(x).\sin x\,dx =  - f(x).\cos x + \int {{\pi ^x}.\cos x\,dx} } \)?

A. \(f(x) = {\pi ^x}\ln x\).

B. \(f(x0 =  - {\pi ^x}\ln x\).

C. \(f(x) = \dfrac{{{\pi ^x}}}{{\ln \pi }}\).

D. \(f(x) = \dfrac{{{\pi ^x}}}{{\ln x}}\).

Câu 11 : Biết F(x) là  nguyên hàm của hàm số \(f(x) = \dfrac{1}{{x - 1}}\,,\,\,F(2) = 1\). Tính F(3).

A. \(F(3) = \dfrac{1}{2}\).

B. \(F(3) = \ln \dfrac{3}{2}\).

C. F(3) = ln2.

D. F(3) = ln2 + 1.

Câu 12 : Hàm số \(F(x) = 3{x^2} - \dfrac{1}{{\sqrt x }} + \dfrac{1}{{{x^2}}} - 1\) có một nguyên hàm là:

A. \(f(x) = {x^3} - 2\sqrt x  - \dfrac{1}{x} - x\).

B. \(f(x) = {x^3} - \sqrt x  - \dfrac{1}{{\sqrt x }} - x\).

C. \(f(x) = {x^3} - 2\sqrt x  + \dfrac{1}{x}\).

D. \(f(x{x^3} - \dfrac{1}{2}\sqrt x  - \dfrac{1}{x} - x\).

Câu 15 : Tìm \(I = \int {\sin 5x.\cos x\,dx} \).

A. \(I =  - \dfrac{1}{5}\cos 5x + C\). 

B. \(I = \dfrac{1}{5}\cos 5x + C\).

C. \(I =  - \dfrac{1}{8}\cos 4x - \dfrac{1}{{12}}\cos 6x + C\).

D. \(I = \dfrac{1}{8}\cos 4x + \dfrac{1}{{12}}\cos 6x + C\).

Câu 16 : Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {e^x} - {e^{ - x}}\), trục hoành, đường thẳng x= - 1 và  đường thẳng x = 1.

A. \(e + \dfrac{1}{e} - 2\)

B. 0

C. \(2\left( {e + \dfrac{1}{e} - 2} \right)\). 

D. \(e + \dfrac{1}{e}\).

Câu 17 : Họ nguyên hàm của hàm số \(f(x) = x\left( {2 + 3{x^2}} \right)\) là:

A. \({x^2}\left( {1 + \dfrac{3}{4}{x^2}} \right) + C\).

B. \(\dfrac{{{x^2}}}{2}\left( {2x + {x^3}} \right) + C\).

C. \({x^2}\left( {2 + 6x} \right) + C\).

D. \({x^2} + \dfrac{3}{4}{x^4}\).

Câu 18 : Nguyên hàm của hàm số \(\int {\sin \left( {\dfrac{\pi }{3} - 2x} \right)\,dx} \) là:

A. \(\cos \left( {\dfrac{\pi }{3} - 2x} \right) + C\).

B. \( - \dfrac{1}{2}\cos \left( {\dfrac{\pi }{3} - 2x} \right) + C\).

C. \(\dfrac{1}{2}\cos \left( {\dfrac{\pi }{3} - 2x} \right) + C\).

D. \( - \cos \left( {\dfrac{\pi }{3} - 2x} \right) + C\).

Câu 19 : Tính nguyên hàm \(\int {\dfrac{{dx}}{{\sqrt x  + 1}}} \) ta được :

A. \(2\sqrt x  + 2\ln \left( {\sqrt x  + 1} \right) + C\).

B. \(2 - 2\ln \left( {\sqrt x  + 1} \right) + C\).

C. \(2\sqrt x  - 2\ln \left( {\sqrt x  + 1} \right) + C\).

D. \(2 + 2\ln \left( {\sqrt x  + 1} \right) + C\).

Câu 21 : Tất cả các giá trị của tham số m thỏa mãn \(\int\limits_0^m {\left( {2x + 5} \right)\,dx = 6} \).

A. m = 1, m = - 6

B. m = - 1 , m = - 6

C. m = - 1, m = 6

D. m = 1, m = 6

Câu 22 : Biết \(\int\limits_2^4 {\dfrac{1}{{2x + 1}}\,dx = m\ln 5 + n\ln 3\,\left( {m,n \in R} \right)} \). Tính P = m – n .

A. \(P =  - \dfrac{3}{2}\).

B. \(P = \dfrac{3}{2}\).

C. \(P =  - \dfrac{5}{3}\). 

D. \(P = \dfrac{5}{3}\).

Câu 23 : Công thức tính khoảng cách từ điểm \(A\) đến đường thẳng \(d'\) đi qua điểm \(M'\) và có VTCP \(\overrightarrow {u'} \) là:

A. \(d\left( {A,d'} \right) = \frac{{\left| {\left[ {\overrightarrow {AM'} ,\overrightarrow {u'} } \right]} \right|}}{{\left| {\overrightarrow {u'} } \right|}}\)

B. \(d\left( {A,d'} \right) = \frac{{\left| {\left[ {\overrightarrow {AM'} ,\overrightarrow {u'} } \right]} \right|}}{{\overrightarrow {u'} }}\)

C. \(d\left( {A,d'} \right) = \frac{{\left[ {\overrightarrow {AM'} ,\overrightarrow {u'} } \right]}}{{\overrightarrow {u'} }}\)

D. \(d\left( {A,d'} \right) = \frac{{\left| {\overrightarrow {AM'} .\overrightarrow {u'} } \right|}}{{\left| {\overrightarrow {u'} } \right|}}\)

Câu 25 : Trong không gian\(Oxyz\), cho 2 điểm \(B(1;2; - 3)\),\(C(7;4; - 2)\). Nếu \(E\) là điểm thỏa mãn đẳng thức \(\overrightarrow {CE}  = 2\overrightarrow {EB} \) thì tọa độ điểm \(E\) là

A. \(\left( {3;\dfrac{8}{3}; - \dfrac{8}{3}} \right).\)

B. \(\left( {3;\dfrac{8}{3};\dfrac{8}{3}} \right).\)

C. \(\left( {3;3; - \dfrac{8}{3}} \right).\)

D. \(\left( {1;2;\dfrac{1}{3}} \right).\)

Câu 28 : Trong không gian với hệ toạ độ \(Oxyz\), cho các điểm: A(-1,3,5), B(-4,3,2), C(0,2,1). Tìm tọa độ điểm \(I\) tâm đường tròn ngoại tiếp tam giác \(ABC\)

A. \(I(\dfrac{8}{3};\dfrac{5}{3};\dfrac{8}{3})\).

B. \(I(\dfrac{5}{3};\dfrac{8}{3};\dfrac{8}{3})\).

C. \(I( - \dfrac{5}{3};\dfrac{8}{3};\dfrac{8}{3}).\)

D. \(I(\dfrac{8}{3};\dfrac{8}{3};\dfrac{5}{3})\).

Câu 29 : Trong không gian\(Oxyz\), cho ba vectơ \(\overrightarrow a  = \left( { - 1,1,0} \right);\overrightarrow b  = (1,1,0);\overrightarrow c  = \left( {1,1,1} \right)\). Trong các mệnh đề sau, mệnh đề nào đúng:

A. \(\cos \left( {\overrightarrow b ,\overrightarrow c } \right) = \dfrac{{\sqrt 6 }}{3}.\)

B. \(\overrightarrow a  + \overrightarrow b  + \overrightarrow c  = \overrightarrow 0 .\)

C. \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) đồng phẳng.

D. \(\overrightarrow a .\overrightarrow b  = 1.\)

Câu 31 : Phương trình mặt cầu tâm \(I\left( {2;4;6} \right)\) nào sau đây tiếp xúc với trục Ox:

A. \({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 6} \right)^2} = 20.\)

B. \({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 6} \right)^2} = 40.\)

C. \({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 6} \right)^2} = 52.\)

D. \({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 6} \right)^2} = 56.\)

Câu 32 : Mặt cầu tâm \(I\left( {2;4;6} \right)\) tiếp xúc với trục Oz có phương trình:

A. \({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 6} \right)^2} = 20.\)

B. \({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 6} \right)^2} = 40.\)

C. \({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 6} \right)^2} = 52.\)

D. \({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 6} \right)^2} = 56.\)

Câu 33 : Cho mặt cầu \(\left( S \right)\): \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\). Phương trình mặt cầu nào sau đây là phương trình của mặt cầu đối xứng với mặt cầu (S) qua mặt phẳng (Oxy):

A. \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 9.\)

B. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 3} \right)^2} = 9.\)

C. \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 9.\)

D. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 3} \right)^2} = 9.\)

Câu 34 : Cho mặt cầu \(\left( S \right)\): \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 4\). Phương trình mặt cầu nào sau đây là phương trình mặt cầu đối xứng với mặt cầu (S) qua trục Oz:

A. \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 4.\)

B. \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 4.\)

C. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 4.\)

D. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 4.\)

Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).

Copyright © 2021 HOCTAP247