Với giá trị nào của m, hàm số y = x^3 + 2(m - 1)x^2 + (m^2 - 4m + 1)x + 2(m^2 + 1)

Câu hỏi :

Với giá trị nào của m, hàm số y=x3+2(m-1)x2+(m2-4m+1)x+2(m2+1) có hai điểm cực trị x1,x2 thỏa mãn 1x1+1x2=x1+x22

A. m = 5 hoặc m = 1

B. m = 2 hoặc m = 1

C. m = 5

D. m = 1

* Đáp án

A

* Hướng dẫn giải

Chọn A

Ta có y'=3x2+4(m-1)x+m2-4m+1. Hàm số có hai cực trị

=> y' = 0 có hai nghiệm phân biệt <=> Δ' > 0 <=> 4(m-1)2-3(m2-4m+1)>0

<=> m2+4m+1>0

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Áp dụng Vi-ét cho phương trình y’ = 0 có hai nghiệm phân biệt x1,x2 ta có 

Đối chiếu điều kiện có m = 5 hoặc m = 1

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

28 câu trắc nghiệm: Cực trị của hàm số có đáp án !!

Số câu hỏi: 28

Copyright © 2021 HOCTAP247