Cho hàm số y = x^3 - 3x^2 - 6x + 8 (C). Phương trình đường thẳng đi qua hai

Câu hỏi :

Cho hàm số y=x3-3x2-6x+8 (C). Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số (C) là:

A. y = 6x – 6

B. y = -6x – 6

C. y = 6x + 6

D. y = -6x + 6

* Đáp án

D

* Hướng dẫn giải

Chọn D

Cách 1: Ta có y=3x2-6x-6;y=6x-6

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Do đó đồ thị hàm số có điểm cực trị là A(1 + 3; -63) và B(1 - 3; 63) .

Phương trình đường thẳng đi qua hai điểm cực trị là:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Cách 2: Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Gọi x1, x2 là nghiệm của phương trình y(x)=3x2-6x-6=0. Khi đó ta có A(x1, y(x1)), BA(x2, y(x2)) là hai cực trị của đồ thị hàm số C với y'(x1) = y'(x2) = 0 .

Do đó ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy A, B thuộc đường thẳng y= - 6x+6.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

28 câu trắc nghiệm: Cực trị của hàm số có đáp án !!

Số câu hỏi: 28

Copyright © 2021 HOCTAP247