Gọi S là tập hợp tất cả các giá trị của tham số thực m sao cho giá trị nhỏ nhất của hàm số \(y = \left| {{{\sin }^4}x + \cos 2x + m} \right|\) bằng 2. Số phần tử của S là:

Câu hỏi :

Gọi S là tập hợp tất cả các giá trị của tham số thực m sao cho giá trị nhỏ nhất của hàm số \(y = \left| {{{\sin }^4}x + \cos 2x + m} \right|\) bằng 2. Số phần tử của S là:

A. 4

B. 3

C. 1

D. 2

* Đáp án

D

* Hướng dẫn giải

Ta có \(y = \left| {{{\sin }^4}x + \cos 2x + m} \right| = \left| {{{\sin }^4}x - 2{{\sin }^2}x + m + 1} \right|.\)

Đặt \(t = {\sin ^2}x,\;t \in \left[ {0;1} \right]\), hàm số trở thành \(y = \left| {{t^2} - 2t + m + 1} \right|\).

Xét hàm \(f\left( t \right) = {t^2} - 2t + m + 1\), với \(t \in \left[ {0;1} \right]\).

Ta có \(f'\left( t \right) = 2t - 2 \le 0\), với \(\forall t \in \left[ {0;1} \right]\), suy ra hàm số nghịch biến trên [0;1].

Do đó \(f\left( 1 \right) \le f\left( t \right) \le f\left( 0 \right) \Leftrightarrow m \le f\left( t \right) \le m + 1.\)

Xét các trường hợp sau:

+ \(m + 1 \le 0 \Leftrightarrow m \le - 1\). Khi đó, y = m - 1. Theo giả thiết \(- m - 1 = 2 \Leftrightarrow m = - 3\) (thỏa mãn).

+ \(- 1 < m \le 0\). Khi đó, min y = 0 (loại).

+ m > 0. Khi đó, min y = m. Theo giả thiết m = 2 (thỏa mãn).

Vậy tập hợp S có 2 phần tử.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Thanh Đa

Số câu hỏi: 47

Copyright © 2021 HOCTAP247