Số giao điểm của đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) với đường thẳng y = 2x + 3 là

Câu hỏi :

Số giao điểm của đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) với đường thẳng y = 2x + 3 là

A. 0

B. 1

C. 2

D. 3

* Đáp án

C

* Hướng dẫn giải

Xét hệ \(\left\{ \begin{array}{l} y = \frac{{2x + 1}}{{x - 1}}\\ y = 2x + 3 \end{array} \right..\)

\( \Rightarrow \frac{{2x + 1}}{{x - 1}} = 2x + 3 \Rightarrow \left\{ \begin{array}{l} x \ne 1\\ 2x + 1 = 2{x^2} + x - 3 \end{array} \right. \Rightarrow \left[ \begin{array}{l} x = \frac{{1 + \sqrt {33} }}{4}\\ x = \frac{{1 - \sqrt {33} }}{4} \end{array} \right..\)

Vậy số giao điểm của đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) và y = 2x + 3 là 2

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Thanh Sơn

Số câu hỏi: 50

Copyright © 2021 HOCTAP247